访问手机版页面
你的位置:老古开发网 > Pic单片机 > PIC单片机C语言编程 > 正文  
PIC单片机asm与C混合编程
内容导读:
一、如何从汇编转向PICC首先要求你要有C 语言的基础。C代码的头文件一定要有#include,它是很多头文件的集合,C 编译器在pic.h 中根据你的芯片自动载入相应的其它头文件。这点比汇编好用。载入的头文件中其实是声明

一、如何从汇编转向PICC

首先要求你要有C 语言的基础。C代码的头文件一定要有#include,它是很多头文件的集合,C 编译器在pic.h 中根据你的芯片自动载入相应的其它头文件。这点比汇编好用。载入的头文件中其实是声明芯片的寄存器和一些函数。顺便摘抄一个片段:
static volatile unsigned char TMR0 @ 0x01;
static volatile unsigned char PCL @ 0x02;
static volatile unsigned char STATUS @ 0x03;
可以看出和汇编的头文件中定义寄存器是差不多的。如下:
TMR0 EQU 0X01;
PCL EQU 0X02;
STATUS EQU 0X03;
都是把无聊的地址定义为大家公认的名字。
1、如何赋值?
如对TMR0 附值,汇编中:
MOVLW 200;
MOVWF TMR0;
当然得保证当前页面在0,不然会出错。
C 语言:
TMR0=200;//无论在任何页面都不会出错。
可以看出来C 是很直接了当的。并且最大好处是操作一个寄存器时候,不用考虑页面的问题。一切由
C 自动完成。
2、如何位操作?
汇编中的位操作是很容易的。在C 中更简单。C 的头文件中已经对所有可能需要位操作的寄存器的每
一位都有定义名称:
如:PORTA 的每一个I/O 口定义为:RA0、RA1、RA2。。。RA7。OPTION 的每一位定义为:PS0、
PS1、PS2 、PSA 、T0SE、T0CS、INTEDG 、RBPU。可以对其直接进行运算和附值。
如:
RA0=0;
RA2=1;
在汇编中是:
BCF PORTA,0;
BSF PORTA,2;
可以看出2 者是大同小异的,只是C 中不需要考虑页面的问题。
3、内存分配问题
在汇编中定义一个内存是一件很小心的问题,要考虑太多的问题,稍微不注意就会出错。比如16 位的
运算等。用C 就不需要考虑太多。下面给个例子:
16 位的除法(C 代码):
INT X=5000;
INT Y=1000;
INT Z=X/Y;
而在汇编中则需要花太多精力。
给一个小的C 代码,用RA0 控制一个LED 闪烁:
#include
void main()
{
int x;
CMCON=0B111; //掉A 口比较器,要是有比较器功能的话。
ADCON1=0B110; //掉A/D 功能,要是有A/D 功能的话。
TRISA=0; //RA 口全为输出。
loop:RA0=!RA0;
for(x=60000;--x;){;} //延时
goto loop;
}
说说RA0=!RA0 的意思:PIC 对PORT 寄存器操作都是先读取----修改----写入。上句的含义是程序先
读RA0,然后取反,最后把运算后的值重新写入RA0,这就实现了闪烁的功能。


二、浅谈PICC 的位操作
由于PIC 处理器对位操作是最高效的,所以把一些BOOL 变量放在一个内存的位中,既可以达到运算
速度快,又可以达到最大限度节省空间的目的。在C 中的位操作有多种选择。
*********************************************
如:char x;x=x|0B00001000;
char x;x=x & 0B11011111;
把上面的变成公式则是:
#define bitset(var,bitno)(var |=1<#define bitclr(var,bitno)(var &=~(1<则上面的操作就是:

char x;bitset(x,4);
char x;bitclr (x,5);
*************************************************
但上述的方法有缺点,就是对每一位的含义不直观,最好是能在代码中能直观看出每一位代表的意思,
这样就能提高编程效率,避免出错。如果我们想用X 的0-2 位分别表示温度、电压、电流的BOOL 值可以如下:
unsigned char x @ 0x20;
bit temperature@ (unsigned)&x*8+0;
bit voltage@ (unsigned)&x*8+1;
bit current@ (unsigned)&x*8+2;
这样定义后X的位就有一个形象化的名字,不再是枯燥的1、2、3、4 等数字了。可以对X 全局修改,也可以对每一位进行操作:
char=255;
temperature=0;
if(voltage)......
*****************************************************************
还有一个方法是用C 的struct 结构来定义,如:
struct cypok{
temperature:1;
voltage:1;
current:1;
none:4;
}x @ 0x20;
这样就可以用
x.temperature=0;
if(x.current)....
等操作了。
**********************************************************
上面的方法在一些简单的设计中很有效,但对于复杂的设计中就比较吃力。如象在多路工业控制上。
前端需要分别收集多路的多路信号,然后再设定控制多路的多路输出。如:有2 路控制,每一路的前端信
号有温度、电压、电流。后端控制有电机、喇叭、继电器、LED。如果用汇编来实现的话,是很头疼的事
情,用C 来实现是很轻松的事情,这里也涉及到一点C 的内存管理(其实C 的最大优点就是内存管理)。
采用如下结构:
union cypok{
struct out{
motor:1;
relay:1;
speaker:1;
led1:1;
led2:1;
}out;
struct in{
none:5;
temperature:1;
voltage:1;
current:1;
}in;
char x;
};
union cypok an1;
union cypok an2;
上面的结构有什么好处呢?
细分了信号的路an1 和an2;
细分了每一路的信号的类型(是前端信号in 还是后端信号out):
an1.in ;
an1.out;
an2.in;
an2.out;
然后又细分了每一路信号的具体含义,如:
an1.in.temperature;
an1.out.motor;
an2.in.voltage;
an2.out.led2;等
这样的结构很直观的在2 个内存中就表示了2 路信号。并且可以极其方便的扩充。
如添加更多路的信号,只需要添加:
union cypok an3;
union cypok an4;
从上面就可以看出用C 的巨大好处。


三、PICC 之延时函数和循环体优化。
很多朋友说C 中不能精确控制延时时间,不能象汇编那样直观。其实不然,对延时函数深入了解一下
就能设计出一个理想的框架出来。一般的我们都用for(x=100;--x;){;}此句等同与x=100;while(--x){;};
或for(x=0;x<100;x++){;}。
来写一个延时函数。
在这里要特别注意:X=100,并不表示只运行100 个指令时间就跳出循环。
可以看看编译后的汇编:
x=100;while(--x){;}
汇编后:
movlw 100
bcf 3,5
bcf 3,6
movwf _delay
l2 decfsz _delay
goto l2
return
从代码可以看出总的指令是是303 个,其公式是8+3*(X-1)。注意其中循环周期是X-1 是99 个。这
里总结的是x 为char 类型的循环体,当x 为int 时候,其中受X 值的影响较大。建议设计一个char 类型的
循环体,然后再用一个循环体来调用它,可以实现精确的长时间的延时。下面给出一个能精确控制延时的
函数,此函数的汇编代码是最简洁、最能精确控制指令时间的:
void delay(char x,char y){
char z;
do{
z=y;
do{;}while(--z);
}while(--x);
}
其指令时间为:7+(3*(Y-1)+7)*(X-1)如果再加上函数调用的call 指令、页面设定、传递参数
花掉的7 个指令。则是:14+(3*(Y-1)+7)*(X-1)。如果要求不是特别严格的延时,可以用这个函数:
void delay(){
unsigned int d=1000;
while(--d){;}
}
此函数在4M 晶体下产生10003us 的延时,也就是10mS。如果把D 改成2000,则是20003uS,以此类推。有朋友不明白,为什么不用while(x--)后减量,来控制设定X 值是多少就循环多少周期呢?现在看看编译它的汇编代码:
bcf 3,5
bcf 3,6
movlw 10
movwf _delay
l2
decf _delay
incfsz _delay,w
goto l2
return
可以看出循环体中多了一条指令,不简洁。所以在PICC 中最好用前减量来控制循环体。
再谈谈这样的语句:
for(x=100;--x;){;}和for(x=0;x<100;x++){;}
从字面上看2 者意思一样,但可以通过汇编查看代码。后者代码雍长,而前者就很好的汇编出了简洁的代
码。所以在PICC 中最好用前者的形式来写循环体,好的C 编译器会自动把增量循环化为减量循环。因为
这是由处理器硬件特性决定的。PICC 并不是一个很智能的C 编译器,所以还是人脑才是第一的,掌握一些
经验对写出高效,简洁的代码是有好处的。


四、深入探讨PICC之位操作
1、用位操作来做一些标志位,也就是BOOL变量.可以简单如下定义:
bit a,b,c;
PICC会自动安排一个内存,并在此内存中自动安排一位来对应a,b,c.由于我们只是用它们来简单的
表示一些0,1信息,所以我们不需要详细的知道它们的地址\位究竟是多少,只管拿来就用好了。
2、要是需要用一个地址固定的变量来位操作,可以参照PIC.H里面定义寄存器。
如:用25H内存来定义8个位变量.
static volatile unsigned char myvar @ 0x25;
static volatile bit b7 @ (unsigned)&myvar*8+7;
static volatile bit b6 @ (unsigned)&myvar*8+6;
static volatile bit b5 @ (unsigned)&myvar*8+5;
static volatile bit b4 @ (unsigned)&myvar*8+4;
static volatile bit b3 @ (unsigned)&myvar*8+3;
static volatile bit b2 @ (unsigned)&myvar*8+2;
static volatile bit b1 @ (unsigned)&myvar*8+1;
static volatile bit b0 @ (unsigned)&myvar*8+0;
这样即可以对myvar操作,也可以对B0--B7直接位操作.
但不好的是,此招在低档片子,如C5X系列上可能会出问题.
还有就是表达起来复杂,你不觉得输入代码累么?呵呵
3、这也是一些常用手法
#definetestbit(var, bit)((var) & (1 <<(bit)))
//测试某一位,可以做BOOL运算
#definesetbit(var, bit)((var) |= (1 << (bit)))//把某一位置1
#defineclrbit(var, bit)((var) &= ~(1 << (bit)))//把某一位清0
附上一段代码,可以用MPLAB调试观察
#i nclude "pic.h"
#definetestbit(var, bit)((var) & (1 <<(bit)))
#definesetbit(var, bit)((var) |= (1 << (bit)))
#defineclrbit(var, bit)((var) &= ~(1 << (bit)))
char a,b;
void main()

标签: asm,c,pic单片机,混合编程,
来源:互联网 作者:karen 时间:2018/7/13 13:50:01
相关阅读
推荐阅读
阅读排行
最近更新
商品推荐