你的位置:首页 > 医疗电子 > 传感器 > 正文
超高速精确度模拟电路SOI上的5V互补SiGe BiCMOS技术
来源:TI 作者:Badih El-Kareh、Scott Balster、Philip Steinmann、Bill Leitz、Kambiz Dawoodi、Marco Corsi、Leland Swanson 及 David Tatman 2006/1/13 0:00:00 人气:342
内容导读:

       1.技术概览:

       第三代完全电介质绝缘的互补 SiGe BiCMOS 工艺 (BiCom3) 针对超高速高精度模拟集成电路而设计。上述器件的工作电压为 5V,可在广泛的温度范围内工作,其 fT 的范围为 15-20 GHz,fmax 的值则达 40-50 GHz 的范围,并最小化了集电极到基板的寄生现象。FT 的值反应出其性能比前一代互补技术要提高近三倍。

       此器件建立在商用 SOI 晶圆之上。首先定义掺质浓度较大的 p 及 n 埋层。随后沉淀的是0.65um的本征外延层,再加上填入氧化物的深、浅沟槽,尽可能减小寄生现象并提高电路密度。在确定双沟道 (bipolar sinker)、CMOS 阱与栅层叠后,我们采用新颖的 dual-epi 工艺来形成 NPN 及 PNP SiGe 双基极区。多发射极的尺寸极小,仅为 0.4 x 0.8μm2,采用独特的界面处理工艺处理技术形成。CMOS 栅极、多晶硅高精度电阻及双基极多晶硅同时形成图案。我们在基极接触点上还采用 CMOS 源/漏注入。在多晶硅底板上采用 TiN 顶板,由此形成 MIM 电容,并选择氧化电介质实现低电介质吸收效果。最后,我们将可用激光修整的 NiCrAl 薄膜电阻器集成到 1.0 mm 间距的 TLM 后端,从而完成有关工艺。图 1 显示了最终 NPN 及 PNP 器件的截面视图。

                         
                    

 

       2.双极晶体管性能特点:

       该技术的主要组件为双极管。对于使用互补设计的高性能模拟应用,使 NPN 与 PNP 的 fT 性能合理正确地匹配(因数在 2 以内)极为有用。除高 fT 之外,高速线性运算放大器以有其它信号调节电路也需要高晶体管增益,主要特点简而言之就是 βoVA 的积。增加 VA 通常以 fT 为代价,因为这需要提高基的掺杂级,因而导致移动性降低,并增加了发射极电容。添加 SiGe 可以增强基场 (field),从而抵消上述影响,这样在提高 VA 同时可得到更大的 fT。表 2 给出了双极晶体管在室温下的特性。

       NPN 与 PNP 的 fT 及 fmax 曲线图分别在图 2 及图 3 中给出,这里的器件为 0.4 x 0.8 um2 器件,而图 4 和图 5 则给出了有关器件的 Gummel 图。 



                        

                      

                       

3.CMOS 与无源组件
除了双极组件外,5V CMOS 也集成到工艺流程中,以支持信噪比 (SNR) 性能要求较高的高速模数转换器 (ADC)。表 3 列出了 BiCom3 CMOS 晶体管特性。 

      

;                  



       工艺开发的关键在于集成稳定而高性能的无源组件。图 6 显示了 TiN-Ox-TiSi2 电容与NiCrAl 薄膜电阻器 (TFR) 的截面视图。电容的 TiN 及 TiSi2 层实现了 MIM 性能,同时在选择电介质材料时也实现了更大的灵活性,因为其在热循环要求较高的后端模块前集成了电容。

       薄膜电阻器通过双掩膜 (2-mask) 工艺流程集成到 TLM 后端中。图 7 显示了 Rs 的稳定性,它是 150 o C 下 NiCrAl 材料的时间函数。表 4 列出了 MIM 电容和 TFR 的主要介质参数。 

                         



       4.电路应用

       我们采用 BiCom3 工艺制造出一款功能丰富的电压反馈放大器,图 8 显示了其简化示意图。它采用一个 AB 类折叠式级联(cascode) 输入级,可实现较高的转换率(高频下的失真较低),并采用一个 AB 类钻石型驱动器输出级。表 5 给出了这种放大器初步得出的测量结果,此外还给出了最快的商用电压反馈放大器的参数。10 倍频率下 IMD3 降低 12dB (300MHz 下 --72dB,相对于 30MHz 下-60dBc)。



               

                   

       更好的 rb、tp、cjc、及 cjs 参数提高了非主 (non-dominant) 极点的频率,实现了更高的小信号带宽(2500 MHz,高于JI工艺的 1000 MHz)。互补 SiGe 双极技术以极低的失真实现了对称架构。我们在 60MHz 上实现了低于 -100dBc 的三极互调制失真 (IMD3),在 100MHz 低于 -90dBc,在 300MHz 上低于 -72dBc。上述结果来自互补 SiGe 双极技术,以及寄生电容的降低,特别是电路高阻抗节点处的下降。此外,DI 晶体管的基极电阻极小,这也实现了较低的等效输入噪声电压。

       5.结论

       带有 MIM 电容及薄膜电阻器的完全氧化物绝缘的 5V 互补 SiGe BiCMOS 技术针对超高速模拟应用而开发。该技术实现了 b·VA 及 f·BVCEO 较高的 NPN 与 PNP 器件并为其更加匹配的特性。我们还实现了电压与温度系数极低的出色的无源组件。我们通过采用这些高性能组件实现了极其快速的电流反馈放大器,其性能远远超过当前市面上的产品。

       鸣谢
       我们感谢 Freising 制造、工程设计、特征设计及管理团队对于我们完成这一项目给予的大力支持。

 

标签:
商品推荐



相关文章
阅读排行
最近更新
推荐阅读