
FX-T4827C256D 液晶显示控制器使用手册

(HV1.1/SV4.X)

一、简介

FX 系列 TFT 液晶显示控制器是一款具有 8 位数据总线或 16 位数据总线的液晶显示控制器。它能和 8/16/32 位 MCU 接口。通过几条简单的指令, 用户就能设计出漂亮的人机界面。

分辨率说明: 3224—320×240(234)

4024—400×240 (234)

4824—480×240 (234)

4827—480×272

 $6448 - 640 \times 480$

8060—800×600

功能:

- ●支持单点写(适合显示点阵图形)
- ●支持 8 点写(适合字符显示)
- ●支持多点写(适合填充或画水平直线)
- ●硬件清屏(清全屏仅需 2.4 毫秒)
- ●直接 x,y 坐标输入, 不需转换
- ●软件 BUSY 信号,相比硬件 BUSY 信号,可以节省一根 I/0 线

情形一 单点写时,不能读出 BUSY 信号,单点写时读出的是显存中的颜色值

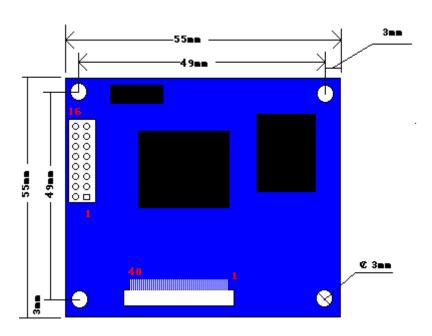
情形二 8 点写时, 对于慢速 CPU,不需要读 BUSY 信号, 对于快速 CPU(如 DSP) ,可以 读取 BUSY 信号或加指令延时

情形三 多点写或硬件清屏时,需要读出 BUSY 信号,以确定操作是否完成。当然如果不读 BUSY 信号,就需要加指令延时。

软件 BUSY 信号相对于指令延时,增强了程序的可移植性和灵活性。

● 8级背光亮度控制

0-----最暗


7-----最亮

- 列坐标自动加功能, 单点写时, 列地址自动加 1, 8 点写时列坐标自动加 8, 多点写时列坐标自动加写的字节数, 硬件清屏时, 坐标自动移到屏幕末尾。当坐标移到行末时, 自动换行。
- 支持字符透明写。

二、FX-T4827C256D 控制板接口与设置

1、FX-T4827C256D 控制板外形尺寸:

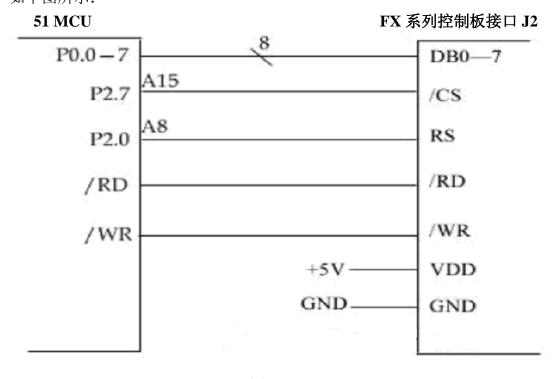
2、与MCU的接口(J2)引脚定义

引脚	定 义	状 态	功能
1	GND	OV	空
2	GND	OV	电源地
3	VCC	5V	电源
4	/RD	输入	读, 低电平有效
5	/WR	输入	写, 低电平有效
6	/CS	输入	片选, 低电平有效
7	RS	输入	端口选择 1-数据,0-指令
8	D0	三态	数据总线(底位)
9	D1	三态	数据总线
10	D2	三态	数据总线
11	D3	三态	数据总线
12	D4	三态	数据总线
13	D5	三态	数据总线
14	D6	三态	数据总线
15	D7	三态	数据总线(高位)
16	_	_	_

3. 与LCD屏接口 (J3)

Pin No.	Symbol	I/O	Function	Remark	
1	V _{LED} .	Р	Power for LED backlight cathode		
2	V _{LED+}	Р	Power for LED backlight anode		
3	GND	Р	Power ground		
4	V_{DD}	Р	Power voltage		
5	R0	1,	Red data (LSB)		
6	R1 🧃		Red data		
7	R2	1	Red data		
8	R3	7	Red data		
9	R4		Red data		
10	R5	T	Red data		
11	R6	I	Red data		
12	R7	1	Red data (MSB)		
13	G0		Green data (LSB)		
14	G1	I	Green data		
15	G2	ı	Green data		
16	G3	I	Green data		
17	G4	I	Green data		
18	G5	ı	Green data		
19	G6	I	Green data		

20	G7	I	Green data (MSB)	
21	В0	ı	Blue data (LSB)	
22	B1	ı	Blue data	
23	B2	ı	Blue data	
24	B3	I	Blue data	
25	B4	I	Blue data	
26	B5	I	Blue data	
27	B6	ı	Blue data	
28	В7	I	Blue data (MSB)	
29	GND	Р	Power ground	
30	PCLK		Pixel clock	
31	DISP		Display on/off	
32	HSYNC	7	Horizontal Sync Signal	
33	VSYNC		Vertical Sync Signal	
34	DE	Ξ.	Data Enable	
35	NC	-	No Connector	
36	GND	Р	Power ground	
37	X1	1/0	Right electrode – differential analog	
38	Y1	I/O	Bottom electrode – differential analog	
39	X2	1/0	Left electrode – differential analog	
40	Y2	I/O	Top electrode – differential analog	

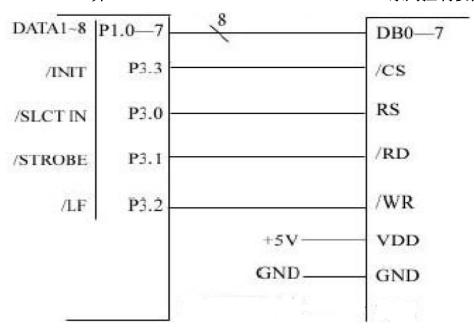

I: input, O: output, P: Power

三. FX-T4827C256D 应用

1、直接访问方式

MPU 通过数据总线和控制信号控制 FX 系列控制板. 如下图所示:

(图一)



2、 间接控制方式

间接控制方式是 MCU 通过对 I/O/口实现对 FX 系列液晶显示控制板的访问控制,如下图所示:

51 MCU/PC 并口

FX 系列控制板接口 J2

(图二)

四. 寄存器表

CS	RS	DATA[7:4]	DATA[3:0]	WR	RD	功能	
0	0	X坐标高位	0000b	0	1	低 4 位: 选择 X 坐标低 8 位寄存器	
						高 4 位: 输入 X 坐标高位字节	
0	1	X坐标低位字	X坐标低位字节		1	写 X 坐标的低 8 位	
0	1	0xB3		1	0	读出控制卡的显示分辨率,无实际意义,可以	
						做测试用	
0	0	Y坐标高位	0001b	0	1	低 4 位: 选择 Y 坐标低 8 位寄存器	
						高 4 位:输入 Y 坐标高位字节	
0	1	Y坐标低位字节		0	1	写 Y 坐标的低 8 位	
0	1	0x00		1	0	返回 0x00: 表明多点写每次最多 256 点	
0	0	写模式	0010b	0	1	低 4 位: 选择数据通道	
						高 4 位: 写模式选择,实际占用三位	
						(D6,D5,D4)	
						D6 D5 D4	
						0 0 0 : 单点写	
						0 0 1 : 8 点写	
						1 0 1 : 8 点写(透明写)	
						0 1 0 : 多点写(最多 256 点)	
						0 1 1 : 硬件清屏	
0	1	写入颜色值	•	0	1	写显示数据	
0	1	读回颜色值	读回颜色值		0	读回指定点的颜色	
0	0	XXXXb	0011b	0	1	保留	
0	1			0	1	保留	
0	0	XXXXb	0100b	0	1	保留	
0	1		·	0	1	保留	
0	0		0101b	0	1	选择背光亮度寄存器	
0	1	背光亮度		0	1	低三位有效:	
						D2 D1 D0	
						0 0 0最暗	
						1 1 1最亮	
0	0		0110b	0	1	选择前景色寄存器	
0	1	前景	<u>.</u> :色	0	1	写入前景色,8点,多点写用	
0	0		0111b	0	1	选择背景色寄存器	
0	1	背景	:色	0	1	写入背景色,8点,硬件清屏用	
	其他保留						

上表中相关符号说明:

CS ----- 片选信号

RS ----- 端口选择信号, 连接到地址线

WR----- 写信号

RD----- 读信号

DATA[7:0]—数据线

端口说明: RS 用来选择端口号, RS 等于 0 选择命令端口, RS 等于 1 选择数据端口下面以 51 系列单片机举例(图一)

命令端口地址为 : 0x7E00 数据端口地址为 : 0x7F00

五. 寄存器编程说明

下面就如何操作寄存器做简要说明,详细说明请参考《**FX-T 系列 LCD 控制器软件编程指南》**#define WCMD XBYTE[0x7e00] // 定义命令端口 (RS=0)
#define WDAT XBYTE[0x7f00] // 定义数据端口 (RS=1)

1. X 坐标寄存器 (0x00)

假设 X 坐标为 x, x 为 16 位的整型变量, 则实现代码为:

WCMD = ((x>>8)<<4); // 选择 x 坐标低位字节寄存器,同时写入 x 坐标的高位

WDAT = (unsigned char)x; // 写入 x 坐标的低 8 位

2. Y坐标寄存器(0x01)

假设 Y 坐标为 y, y 为 16 位的整型变量, 则实现代码为:

WCMD = ((y>>8)<<4)|0x01; // 选择 x 坐标低位字节寄存器,同时写入 x 坐标的高位

WDAT = (unsigned char)y; // 写入 x 坐标的低 8 位

3. 打开显示通道和设置写模式 (0x02)

WCMD = 0x02; // 打开显示通道,同时使能单点写 WDAT = 0xe0; // 向控制器写入颜色 0xe0(红色)

WCMD = 0x12; // 打开显示通道, 同时使能 8 点写

WDAT = 0x55; // 向控制器写入 8 点,该位为 0 写入背景色, 为 1 写入前景色

WCMD = 0x22; // 打开显示通道, 同时使能多点写 WDAT = 32; // 写入 32 点, 都以前景色填充

WCMD = 0x32; // 打开显示通道, 同时使能硬件清屏

WDAT = 0; // 当使能硬件清屏时, 向控制器写入任意值, 则硬件以背景色清屏

WCMD = 0x52; // 使能 8 点写, 同时禁止背景色写入,即透明写

WDAT = 0x55; // 想控制器写入 8 个点, 字节中 1 的地方用前景色写入, 0 的地方则保留

原来屏幕中的颜色。

4. 其他寄存器操作说明见编程指南。

六. 函数(见 FX-T 系列 LCD 控制器软件编程指南)