

FS8610 – MCU-Based Network Controller

with Hardware TCP/IP Protocol Engine

Data Sheet

Preliminary Version: 2.0

Release date: 02/14/2007

Contents

Dat	ata Sheet1								
Pre	liminary Versio	n: 2.01							
Rel	ease date: 02/	14/20071							
Con	itents								
1.	General Descript	ions5							
2.	Features								
3.	Pin Description	7							
3.1.		Ethernet MII Interface Signals							
3.2.		External Program/Data Memory Interface Signals							
3.3.		System Signals							
3.4.		UART Interface Signals							
3.5.		Timer Interface Signals 11							
3.6.		GPIO Interface Signals							
3.7.		P-Port Debug Interface Signals							
3.8.		Power Signals							
4.	Pin Configuratio	n14							
5.	Block Diagram								
6.	Functional Descr	iption16							
6.1.		E8051D16							
6.2.		System Clock							
6.3.		System Memory16							
	6.3.1.	Code Bank Switching Mechanism16							
	6.3.2.	Data Memory Extension							
	6.3.3.	Program Shadow RAM16							

Fulhua Microelectronics Corp. Email: sales@fameg.com

		Email: sales@fameg.com	Http://www.FameG.c
	6.3.4.	On-Line Firmware Update	
	6.3.5.	DMA	
6.4.		MII Interface	17
6.5.		VLAN	17
6.6.		Hardware TCP/IP Engine	
	6.6.1.	ARP (Address Resolution Protocol)	
	6.6.2.	RARP (Reverse Address Resolution Protocol)	
	6.6.3.	IP (Internet Protocol)	
	6.6.4.	ICMP (Internet Control Message Protocol)	
	6.6.5.	IGMP (Internet Group Management Protocol)	20
	6.6.6.	UDP (User Datagram Protocol)	20
	6.6.7.	TCP (Transmission Control Protocol)	20
6.7.		PPPoE (Point-to-Point Protocol over Ethernet)	21
6.8.		UART	21
6.9.		GP10	
6.10		SRAM-based External Expansion Interface	
6.11		System Standby & Wake-On-LAN (WOL)	
6.12		P-Port ICE Debug Interface	
7.	System Diagram		23
7.1.		Program Shadow RAM Enable (Single Code Bank)	23
7.2.		Program Shadow RAM Enable (Multiple Code Banks)	23
<i>7.3</i> .		Program Shadow RAM Disable	24
8.	Electrical Chara	cteristics	25
8.1.		Absolute Maximum Ratings	25
8.2.		<i>Power Consumption (DVDD_33 = 3.3V, DVDD_18 = PLLVDD_18 = 1</i> 25	.8 <i>V, TA</i> = 25 $^{\circ}C$)
8.3. 1.98	$V, \qquad TA = 25 ^{\circ}C)$	<i>DC Characteristics (DVDD_33 = 3.0V ~ 3.6V, DVDD_18 = PLLVDD_</i> 26	18 = 1.62V ~
8.4. 1.98	$V, \qquad TA = 25 ^{\circ}C)$	AC Characteristics (DVDD_33 = 3.0V ~ 3.6V, DVDD_18 = PLLVDD_4 27	18 = 1.62V ~

FameG Fulhua Microelectronics Corp.

		Email: sales@fameg.com	Http://www.FameG.com
	8.4.1.	Crystal/Oscillator Timing	27
	8.4.2.	Power-on Hardware Reset and PLL Clock Timing	27
	8.4.3.	MII Receiving Timing	
	8.4.4.	MII Transmitting Timing	
	8.4.5.	MII Management Read Timing	29
	8.4.6.	MII Management Write Timing	
	8.4.7.	External Main Data Memory Bus Write Timing	
	8.4.8.	External Main Data Memory Bus Read Timing	
	8.4.9.	External Application Expansion Bus Write Timing	
	8.4.10.	External Application Expansion Bus Read Timing	
	8.4.11.	External Flash/ROM Memory Bus Write Timing	
	8.4.12.	External Flash/ROM Memory Bus Read Timing	
	8.4.13.	External Program Memory Bus Write Timing	
	8.4.14.	External Program Memory Bus Read Timing	
9.	128L LQFP Pac	kage Dimension (14 x 14 x 1.4 mm)	
10.	Revision Histo	Dry	

Fulhua Microelectronics Corp.

1. General Descriptions

FS8610 is a high performance, MCU-based network controller with Hardware TCP/IP Protocol Engine embedded. Hardware TCP/IP Protocol Engine implements ARP, RARP, IPv4, ICMP, IGMPv2, UDP and TCP protocols, which are all implemented by hardware, to greatly offload MCU's computing power. Not only Software TCP/IP protocol stacks can be totally replaced by Hardware TCP/IP Protocol Engine for program code size saving and for system development more quickly, but also a high network performance can be easily achieved by Hardware TCP/IP Protocol Engine.

High performance 1T Pipelined RISC MCU which is 10 times faster than standard 8051 is embedded in FS8610. MCU clock is dynamically configurable from 25MHz to 160MHz. External SRAM Data memory is extendable to 12M bytes. External Flash/ROM Program memory is up to 2M bytes by hardware-based Code Bank switching mechanism. Program codes can be On-line Updated through network from remote station. FS8610 supports Program Shadow RAM function to greatly enhance program running speed. One high performance DMA is embedded to enhance efficiency of bulk data movement.

FS8610 supports 10BAST-T and 100BAST-TX compilant with IEEE 802.3 and IEEE 802.3u. FS8610 can operates at full duplex or half duplex mode at 10M/100M speed and supports MAC flow control compliant with IEEE 802.3x. Both of VLAN-tagged frame and un-tagged frame are supported.

FS8610 supports 4 independent hardware TCP/UDP socket channels for high performance requirement. It also supports software TCP/UDP socket channels for low data throughput requirement and no socket channel counts are limited. FS8610 also supportes PPPoE connection over xDSL.

FS8610 supports one high speed programmable Sync/Async UART interface from 1200 bps to 230400 bps. 32 high speed GPIO interface are supported not only for general purpose usage but also for I²C (Master/Slave), I²S and SPI interface emulation. FS8610 supports expansion SRAM interface to connect with three external applications easily. Three external interrupts are also supported for application uasge.

FS8610 supports Standby mode and Shut Down mode to save power consumption. System can be resumed from Standby mode by Magic packet, Ethernet Link Status Change or External interrupts.

P-Port ICE debug interface, which is connected with FameG D!T-51 tool, makes software development and debugging more easily and efficiency. It helps to reduce system development time and let product at market more soon.

A 25MHz crysal or oscillator is reuired for internal PLL to generate a dynamically programmable system clock. FS8610 is 0.18um process and packaged as 128-pin LQFP. Two external voltage sources 1.8V and 3.3V are required.

2. Features

- Support E8051D with Pipelined RISC 10 times faster standard 8051
- Support dynamic configurable system bus clock from 25MHz to 160MHz
- Support external SRAM main data memory to 2MB, extendable to 12MB (Max.)
- Support external Flash/ROM program memory up to 2MB (32 code banks) with hardware-based Code Bank Switching
- Support Program Shadow RAM function to run program codes from external program SRAM memory instead from external Flash/ROM memory
- Support On-Line Firmware Update function and System Re-initialization from remote station at Program Shadow RAM Enable mode
- Support DMA function for fast and bulk data transfer up to 64KB for each data transfer
- Support MII interface compliant with IEEE 802.3 100BASE-TX and 10BASE-T
- Support Full duplex and Half duplex mode
- Support MAC Flow Control compliant with IEEE 802.3x
- Support flexible MAC multicast address hash filtering
- Support Ethernet frame and IEEE 802.3 frame
- Support VLAN-tagged frame compliant with IEEE 802.3ac
- Support 1 programmable VLAN ID
- Support Hardware ARP/RARP/IPv4/ICMP/IGMPv2/TCP/UDP Protocol Engine without Software TCP/IP protocol stacks
- Support 4 independent hardware TCP/UDP socket channels for high performance requirement
- Support software TCP/UDP socket channels without channel counts limitation
- Support PPPoE connection over xDSL
- Support one high speed programmable Sync/Async UART interface from 1200 bps to 230400 bps
- Support 32 high speed GPIOs interface, which can be emulated such as I²C (Master/Slave), I²S and SPI interfaces
- Support Timer 0 and Timer 1 interface
- Support 3 external applications connected at external SRAM data memory interface
- Support 3 external interrupt sources
- Support independent programmable memory bus Read/Write Wait States for Program/Data memory and 3 External applications
- Support Standby mode and Shut Down mode to save power consumption
- Support System Resume from Standby mode by Magic packet, Ethernet Link Status Change or External interrupts
- Support P-Port ICE debug interface
- 128-pin LQFP package

3. Pin Description

3.1. Ethernet MII Interface Signals

Signal Name	Pin No	I/O	Description
TXCLK	90	Ι	Transmit Clock.
			TXCLK is a continuous clock from external PHY device.
			During 100Mbps mode, TXCLK is 25MHz. During 10Mbps
			mode, TXCLK is 2.5MHz.
TXEN	95	0	Transmit Enable
			It indicates TXD contains valid data to be transmitted to the
			external PHY. This signal is synchronous to TXCLK.
TXD[3:0]	94 ~ 91	0	Transmit Data [3:0]
			This is a group of 4 data signals, which are driven
			synchronous to TXCLK for transmission to the external PHY.
			TXD3 is the most significant bit and TXD0 is the least
			significant bit.
RXCLK	87	Ι	Receive Clock.
			RXCLK is a continuous clock from external PHY device.
			During 100Mbps mode, RXCLK is 25MHz. During 10Mbps
			mode, RXCLK is 2.5MHz
RXER	81	Ι	Receive Error
			It indicates a media error is detected from external PHY.
RXDV	82	Ι	Receive Data Valid
			It indicates the recovered and decoded RXD from an external
			PHY is valid and synchronous to RXCLK.
RXD[3:0]	86 ~ 83	Ι	Receive Data [3:0]
			This is a group of 4 signals, sourced from an external PHY that
			contains data aligned on nibble boundaries and driven
			synchronous to the RXCLK. RXD3 is the most significant bit
			and RXD0 is the least significant bit.
COL	96	Ι	Collision Detection
			It indicates a collision detected on the media by the external
			PHY.
CRS	80	Ι	Carrier Sense
			It indicates there is a non-idle media by the external PHY.
MDC	79	0	Management Data Clock

			This is a continuous clock to PHY's management interface for management data transfer.		
MDIO	78	I/O	Management Data Input/Output		
			This pin is used to transmit or receive management information to PHY.		
PHY_RSTB	97	0	PHY Reset When asserted low, it is used to reset external PHY from FS8610.		

3.2. External Program/Data Memory Interface Signals

Signal Name	Pin No	I/O	Description		
XADDR[18:0]	32 ~ 26,	0	Program/Data Address Bus[18:0]		
	22 ~ 11		These pins indicate	the lower 19-bit ex	ternal program/data
			memory address bus	[18:0] pins.	
XADDR[23:19]/	37 ~ 33	I/O	Program/Data Addr	ess Bus[23:19]/	
Code_Bank[4:0]			Code Bank Number	[4:0] {Jumper Setting	g}
{Jumper Setting}			During Power-on rese	et, this pin is set to in	put pins and latched
			for Code Bank jumpe	r setting.	
				Code Bank [4:0]	Code Bank
					No.
			Program Shadow	5'd0	1
			RAM Enable	5'd1	2
				5'd31	32
			Program Shadow	Fixed to 5'd31	X
			RAM Disable		
			Note: 0 => Pull Down	n; 1 => Pull Up	11
			After power-on reset,	these pins are set out	put pins and used as
			address bus [23:19].		
XDATA[7:0]	8~1	I/O	Program/Data Mem	ory Bus[7:0]	
			These pins indicate th	ne 8-bit program/data	memory bus.
DATA_CSB0	121	0	Main Data Memory	Chip Select 0	
			Active low. This pin	indicates external SR	AM data memory is
			selected for read/writ	e access. The address	s of DATA_CSB0 is
			fixed in the range from	m 24'h00_8000 to 24	'h20_7FFF.
EXT_CSB1	120	0	External Chip Select	t 1	
			Active low. This pin	indicates external SR	AM data memory is

			selected for read/write	accessed. The	address is programmable		
			in the range from 24'h2	20_8000 to 24'1	hBF_FFFF.		
EXT_CSB2	119	0	External Chip Select 2				
			Active low. This pin in	dicates externa	1 SRAM data memory is		
			selected for read/write	accessed. The	address is programmable		
			in the range from 24'h2	20_8000 to 24'1	nBF_FFFF.		
EXT_CSB3/	118	0	External Chip Select 3	3/			
PRG_CSB			Program Memory Chi	ip Select			
			This pin can be used	as External (Chip Select 3 signal of		
			Program Memory Chi	p Select signal	l depending on Shadow		
			RAM function enabled	or not.			
				One	Multiple		
				Code Bank	Code Banks		
			Program Shadow	EXT_CSB3	PRG_CSB		
			RAM Enable				
			Program Shadow	PRG_CSB	PRG_CSB		
			RAM Disable				
			EXT_CSB3:		I		
			Active low. This pin in	dicates externa	1 SRAM data memory is		
			selected for read/write	accessed. The	address is programmable		
			in the range from 24'h2	in the range from 24'h20_8000 to 24'hBF_FFFF.			
			PRG_CSB:	<u>PRG_CSB:</u>			
			Active low. This pin i	Active low. This pin indicates external Program memory			
			selected for read/write a	access.			
DATA_WRB	123	0	Data Memory Write H	Enable			
			Active low. This pin in	dicates externa	l SRAM data memory is		
			selected for write acces	s.			
DATA_OEB	122	0	Data Memory Output	Enable			
			Active low. This pin in	dicates externa	1 SRAM data memory is		
			selected for read access				
FLASH_CSB	126	0	Flash Memory Chip S	elect			
			This pin can be used	as Flash/ROM	M Memory Chip Selec		
			signal at Program Shad	ow RAM Enat	ole mode or undefined a		
			Program Shadow RAM				
					Definition		
			Program Shadow RA	M Enable	FLASH_CSB		
	1	1	Program Shadow RA		Undefined		

-

			Active low.	This pin indicates external Flash memory is
			selected for read/write access at Program Shadow RAM	
			Enable mode	
FLASH_WRB/	128	I/O	Flash Memo	ry Write Enable/
Shadow_En			Program Sha	adow RAM Enable <i>{Jumper Setting}</i>
{Jumper Setting}			During Powe	r-on reset, this pin is set to input pins and latched
			for Program S	Shadow RAM function jumper setting.
			Pull Up	Program Shadow RAM Enable
				All of the program codes are copied from
				Flash memory to Program SRAM memory
				to run.
			Pull Low	Program Shadow RAM Disable
				All of the program codes are directly run at
				Flash memory.
			Active low.	After power-on reset, this pin indicates external
			Flash memor	y is selected for write access.
FLASH_OEB/	127	I/O	Flash Memo	ry Read Enable/
INT_CLK_En			Internal Clo	ck Enable { <i>Jumper Setting</i> }
{Jumper Setting}			During Powe	r-on reset, this pin is set to input pins and latched
			for system clo	ock source selection jumper setting. This pin must
			be pulled up	at normal mode.
			Pull Up	PLL Mode
				Internal PLL clock source is used as
				system clock for Normal Mode.
			Pull Low	Bypass Mode
				External XI clock source is used as system
				clock for testing only.
				·
			Active low.	After power-on reset, this pin indicates Flash
			memory is se	lected for read access.

3.3. System Signals

Signal Name	Pin No	I/O	Description
XI	106	Ι	Crystal/Oscillator Input
			This pin is used for internal PLL to generate programmable

The above information is the exclusive intellectual property of FameG and shall not be disclosed, distributed or reproduced without permission from FameG Document No.: Format-ID-ENG-10 Release Date: 02/14/2007 **FameG** Fulhua Microelectronics Corp.

Email: sales@fameg.com Http://www.FameG.com

			system clock. The clock frequency is fixed to 25MHz.
XO	105	0	Crystal Output
			This pin is used for internal PLL for generating programmable
			system clock.
PWR_RSTB	104	Ι	Power-on Hardware Reset
			Active low. When asserted, FS8610 will be reset.
OP_MD[1:0]	111, 110	I/PD	Operation Mode
			These pins are used to configure FS8610 into which mode to
			operate. These pins must be floating and set to Normal mode.
			2'b00: Normal Mode
			Others: Reserved for testing
SCAN_EN	101	I/PD	Scan Mode
			This pin is used for testing. When FS8610 is configured to
			Normal Mode, this pin must be gloating and set to Scan
			Disabled mode.
			1: Scan Enable
			0: Scan Disable

3.4. UART Interface Signals

Fulhua Microelectronics Corp.

Signal Name	Pin No	I/O	Description	
UART_TXD	112	0	0 UART Transmit Data	
			This pin is used as UART transmit data signal.	
UART_RXD	113	I/O/ UART Receive Data		
		PU	This pin is used as UART receive data signal.	

3.5. Timer Interface Signals

Signal Name	Pin No	I/O	Description	
Timer0_CLK	115	I/PD	Timer 0 Clock Input	
			This pin is used as clock input of Timer 0.	
Timer0_Gate	114	I/PD	Timer 0 Gate	
			Active high. This pin is used as Gate input of Timer 0.	
Timer1_CLK	117	I/PD	Timer 1 Clock Input	
			This pin is used as clock input of Timer 1.	
Timer1_Gate	116	I/PD	Timer 1 Gate	
			Active high. This pin is used as Gate input of Timer 1.	

The above information is the exclusive intellectual property of FameG and shall not be disclosed, distributed or reproduced without permission from FameG Document No.: Format-ID-ENG-10 Release Date: 02/14/2007

3.6. GPIO Interface Signals

Signal Name	Pin No	I/O	Description				
GPIO0[7:0]	47 ~ 40	I/O/	General Purpose Input/Output Group 0[7:0]				
		PU	GPIO group 0 pins can be used as input or output pins for				
			general purpose.				
GPIO1[7:0]	54 ~ 48,	I/O/	General Purpose Input/Output Group 1]7:0]				
	58	PU	GPIO group 1 pins can be used as input or output pins for				
			general purpose. General Purpose Input/Output Group 2[7:0]				
GPIO2[7:0]	66 ~ 59	I/O/	General Purpose Input/Output Group 2[7:0]				
		PU	GPIO group 2 pins can be used as input or output pins for				
			general purpose.				
GPIO3[7:3]	77 ~ 76,	I/O/	General Purpose Input/Output Group 3[7:3]				
	72 ~ 70	PU	GPIO group 3 pins[7:3] can be used as input or output pins for				
			general purpose.				
GPIO3[2:0]/	69 ~ 67	I/O/	General Purpose Input/Output Group 3[2:0]/				
EXT_INTB[2:0]		PU	EXT_INTB[2:0]				
			GPIO group 3 pins[2:0] can be used as input or output pins for				
			general purpose or used as External Interrupt Sources [2:0]				
			inputs. While used as External Interrupt source, the signal is				
			active low.				

3.7. P-Port Debug Interface Signals

Signal Name	Pin No	I/O	Description
P_CLK	100	0	P-Port Clock
			This signal is used as P-Port clock input for D!T-51 ICE
			debugger.
P_IN	98	I/PU	P-Port Data Input
			This pin is used as P-Port Data input for D!T-51 ICE debugger.
P_OUT	99	0	P-Port Data Output
			This pin is used as P-Port Data output signal for D!T-51 ICE
			debugger.

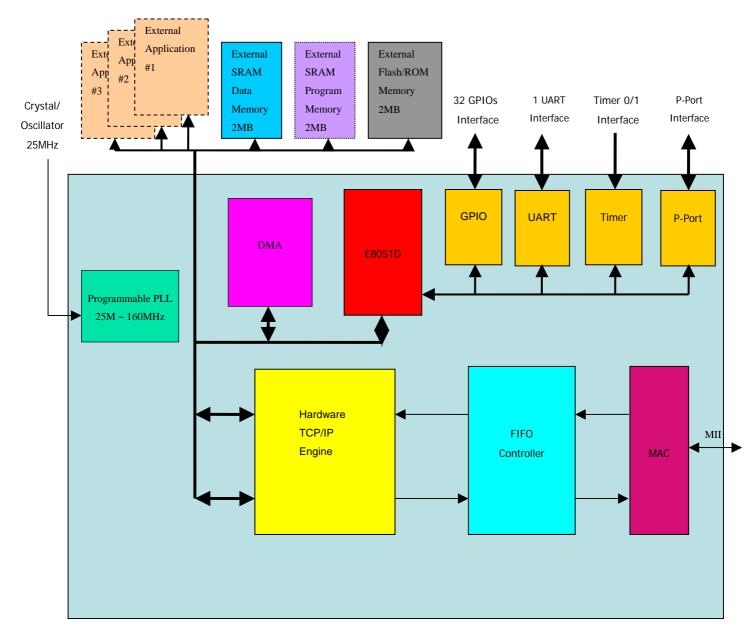
3.8. Power Signals

Signal Name	Pin No	I/O	Description
DVDD_18	23, 57, 75, 107	Р	Digital Core VDD Digital core power 1.8V

The above information is the exclusive intellectual property of FameG and shall not be disclosed, distributed or reproduced without permission from FameG Document No.: Format-ID-ENG-10 Release Date: 02/14/2007

DVDD_33	9, 25, 38, 55, 73, 89, 109, 125	Р	Digital I/O VDD Digital I/O power 3.3V
DVSS	10, 24, 39, 56, 74, 88, 108, 124	G	Digital Ground Digital ground
PLLVDD_18	103	Р	PLL VDD Analog PLL Power 1.8V
PLLVSS	102	G	PLL Ground Analog PLL Ground

4. Pin Configuration



The above information is the exclusive intellectual property of FameG and shall not be disclosed, distributed or reproduced without permission from FameG Document No.: Format-ID-ENG-10 Release Date: 02/14/2007

FameG Fulhua Microelectronics Corp. Fulhua Microelectronics Corp.

Email: sales@fameg.com Http://www.FameG.com

5. Block Diagram

The above information is the exclusive intellectual property of FameG and shall not be disclosed, distributed or reproduced without permission from FameG Document No.: Format-ID-ENG-10 Release Date: 02/14/2007

6. Functional Description

6.1. E8051D

E8051D is an ultra high performance 8-bit embedded controller. It has Pipelined RISC architecture 10 times faster compared to standard 8051. E8051D's 100% software compatibility with standard 8051 8-bit microcontroller is supported for software programming easily.

6.2. System Clock

FS8610 has built-in one PLL to generate system clock. The clock source of PLL is fixed to 25 MHz from crystal or oscillator. The system clock generated from PLL is programmable in the range from 25 MHz to 160 MHz. The system clock can be dynamically configured according to system requirement even the system is still running.

6.3. System Memory

FS8610 supports external Program memory and external Data memory only. It does not built-in any internal Program memory and internal Data memory. FS8610 implemets special features, Code Bank Switching, Data Memory Extension, Program Shadow RAM, On-Line Firmware Update and DMA function to enhance whole system performance.

6.3.1. Code Bank Switching Mechanism

FS8610 has implemented hardware-based Code Bank switching mechanism, so it can supports Program memory up to 2MB, which is equivalent to 32 code banks. Each code bank is 64KB in size. FS8610's program memory is no longer limited to 64KB only.

6.3.2. Data Memory Extension

FS8610 can support Data memory up to 12 MB. Data memory includes Main Data memory part and Expansion Data memory part. Main Data memory is up to 2MB maximumly. Pin DATA_CSB0 is used as chip select signal. Data memory can be extended up to 12MB by Expansion Data memory. Three external chip select signals (EXT_CSB1 ~ EXT_CSB3) can be used and programmable at specific address space.

6.3.3. Program Shadow RAM

In order to enhance the program code's running performance, FS8610 support Program Shadow RAM to run program codes at Program SRAM memory instead of at Program Flash memory. While Program Shadow RAM mode is enabled, program codes are copied from Flash memory to SRAM memory after power-on reset and executed with fast SRAM memory read/write access. While Program Shadow RAM mode is disabled, FS8610 directly runs program codes at Flash memory with lower Flash memory read/write access.

6.3.4. On-Line Firmware Update

FS8610 supports On-Line Firmware Update function to update new firmware to Flash memory and re-initializes system from remote station. On-Line Firmware Update function can only be activated at Program Shadow RAM enable mode.

6.3.5. DMA

FS8610 supports DMA function to copy one bulk data from block to another on the external Data memory. The size of each data transfer can be 0 bye to 64K bytes maximumly. While byte length is set to 0 byte, DMA function is not activated. While DMA function is activated, MCU-E8051D is idle until DMA is complete.

6.4. MII Interface

FS8610 supports 10BASE-T and 100BASE-TX compliant with 802.3 and IEEE 802.3u. Full duplex mode and half duplex mode are provided at speed 10Mbps or 100Mbps. FS8610 can transmit and receive both of Ethernet packets and IEEE 802.3 packets.

FS8610 supports MAC Sync/Async flow control mechanism, which is compilant with IEEE 802.3x, to transmit and receive MAC Pause frames in order to achieve the better network transfer performance. MAC Pause frames will be automatically discarded by FS8610.

FS8610 will always monitor the PHY's link, duplex, speed status and pause capabilities through MII management interface to update the PHY's status.

6.5. VLAN

FS8610 supports transmission and receiption of untagged frame, priority-tagged frame and VLAN-tagged frame. Untagged frame doesn't include 802.1Q tag filed in the Ethernet/IEEE802.3 packet. Priority-tagged and VLAN-tagged frame includes 802.1Q tag field in the Ethernet/IEEE802.3 packet.

FS8610 supports programmable user priority level from 0 to 7, and VID (VLAN Identification) value from 1 to 4094 at tagged frame. Only one VID is supported. FS8610 can receive the tagged frame with VID value matched and CFI bit setting to 0 or 1. But it can only transmit the tagged frame with CFI bit setting to 0.

6.6. Hardware TCP/IP Engine

FS8610 supports Hardware TCP/IP Protocol Engine to greatly offload the MCU loading and to enhance the system performance. TCP/IP protocol suites like ARP, RARP, IPv4, ICMP, IGMPv2, TCP and UDP are all implemented at Hardware TCP/IP Protocol Engine. FS8610 supports four independent hardware TCP/UDP socket channels for high bandwidth TCP/UDP data transfer requirement. In the Hardware TCP/IP channels, MAC header, Q-TAG header, IP header, TCP/UDP header are all inserted and removed automatically by FS8610. Another software channel is provided to process the ICMP/IGMPv3/TCP/UDP

packets without TCP/UDP channel counts limitation. In the software channel, only MAC header, Q-TAG header and IP header is inserted and removed by FS8610. ICMP/IGMP/TCP/UDP headers are parsed by driver.

6.6.1. ARP (Address Resolution Protocol)

FS8610 supports ARP to convert 32-bit IP address to 48-bit Ethernet MAC address for Ethernet/802.3 packet. An ARP cache table of 64 entries is built-in to prevent ARP packet flooding. FS8610 provides programmable entry lifetime timer and unicast polling counter for valid entry in the ARP cache table. FS8610 will automatically reply from other host's ARP request packet. While no ARP reply packet is received for specific ARP request from FS8610, an ARP host non-exist interrupt is asserted to specify the host is non-exist. In order to detect IP address confliction, FS8610 will broadcast Gratuitous ARP packets or check the received ARP Request packets from others.

The ARP features that FS8610 implemts are listed below.

- Support ARP Request and Reply
- Support ARP Cache Table for 64-Entries
- Support ARP Entry validation
 - Support Entry timeout
 - Support Entry unicast-poll
- Support sending Gratuitous ARP for IP conflict detection
- Support automatic detecting IP conflict from incoming ARP Request

6.6.2. RARP (Reverse Address Resolution Protocol)

FS8610 supports RARP to get the assigned 32-bit IP address from RARP server. While RARP function is enabled, FS8610 will start to transmit broadcast RARP Request packets continuously until the RARP Reply packet is received from RARP server or the RARP timer is timeout. Then RARP module will generate a RARP IP Address Assignment interrupt or a RARP Timeout interrupt to notify system driver.

The RARP features that FS8610 implemts are listed below.

- Support RARP Request
- Support RARP retransmission and timeout

6.6.3. IP (Internet Protocol)

FS8610 supports IP version 4 only. Any IP packet is not version 4 will be silently discarded. FS8610 will automatically generate and remove IP header including IP options field and padding field. Any packet with IP header checksum error is discarded silently.

FS8610 only supports IP address Class A, B, C and D. IP address Class E packet is not supported and will be silently discarded. FS8610 supports Unicast, Muticast and Broadcast IP packets transmission and receipt. 4 sets of IP Group Address are programmable and can be transmited or received by FS8610 to join or leave Muticast Group. FS8610 can receive the multicast IP packet which belongs to the joined muticast Groups. FS8610 supports three types of IP broadcast packets: Limited Broadcast packet (255.255.255.255.), Network (Class A/B/C) Broadcast packet and Subnet (Class A/B/C) Broadcast packet. Limited Broadcast IP packet will be limited on the local network. It will be blocked by router and can't be forwarded to other network. Network Broadcast IP packet and Subnet Broadcast IP packet will be forwarded to other network by router.

FS8610 supports IP packet fragmentation. The IP payload can be up to 64KB in length. FS8610 does not support IP packets reassembly. All of the received fragmented IP packets are reassembled by driver.

The IP features that FS8610 implemts are listed below.

- Support IPv4 protocol only (IPv6 packet will be silently discarded)
- Support IP header checksum generation and verification
- Support IP limited broadcast, directed network broadcast, directed subnet broadcast, directed all-subnet broadcast
- Support four sets of IP group address
- Support IP Fragmentation
- Support Identification (ID) field programmable
- Support Type-of-Service (TOS) field programmable
- Support Time-to-Live (TTL) field programmable
- Support IP header checksum generation and validation

6.6.4. ICMP (Internet Control Message Protocol)

FS8610 supports to transmit and receive ICMP packets. ICMP header is generated and removed by FS8610. Any packet with ICMP header checksum error is discarded silently. The Type and Code fields of ICMP header is parsed by driver.

The ICMP features that FS8610 implemts are listed below.

- Support all ICMP error message
- Support all ICMP query message
- Support ICMP header checksum field generation and validation
- Support transmitting fragmented ICMP message

6.6.5. IGMP (Internet Group Management Protocol)

IGMP is used to report IP multicast group membership to neighboring multicast routers. FS8610 only supports both of IGMP version 1 & version 2 packet without driver's interpretation. IGMP version 3 packet will be received, transmitted and parsed by driver. Any packet with IGMP header checksum error is silently discarded. FS8610 supports 4 sets of IP group address for IP multicasting usage. Join or leave the specified group is controlled by driver.

The IGMP features that FS8610 implemts are listed below.

- Support IGMPv2 and compliant with IGMPv1
- Support 4 Group Address join and leave
- Support Router Alert IP option
- Support IGMP header checksum field generation and validation

6.6.6. UDP (User Datagram Protocol)

FS8610 supports to transmit and receive UDP packets. UDP header is generated and removed by FS8610. Any packet with UDP header checksum error is discarded silently.

While transmitting a UDP packet, driver only needs to write UDP payload into UDP socket channel FIFO. FS8610 will automatically insert MAC/IP/UDP header before UDP payload and append CRC filed to assembly one Ethernet/802.3 packet for transmitting.

While receiving a UDP packet, FS8610 will remove MAC/IP/UDP header and write UDP payload filed into socket channel FIFO. UDP channel can be programmed to accept UDP packet destinated to local port number with Single Unicast IP address, All Unicast IP address, Multicast IP address and Broadcast IP address.

The UDP features that FS8610 implemts are listed below.

- Support client/server mode
- Support to transmit single unicast, all unicast, multicast or broadcast packets
- Support to receive single unicast, all unicast, multicast or broadcast packets
- Support UDP header checksum generation and validation
- Support not to generate checksum (transmit all 0's checksum field)
- Support not to validate checksum (receive all 0's checksum field)
- Support transmitting fragmented UDP datagram

6.6.7. TCP (Transmission Control Protocol)

FS8610 supports to transmit and receive TCP packets. TCP header is generated and removed by FS8610. Any packet with TCP header checksum error is discarded silently.

FS8610 can easily establish TCP channel connection and termination by driver's register setting. After each TCP channel is connected well, driver can read and write TCP payload directly through socket channel interface directly. While transmitting TCP packets, FS8610 automatically reads TCP payload from socket FIFO, inserts MAC/IP/TCP header before TCP payload and appends CRC filed to assembly one Ethernet/802.3 packet. While receiving TCP packets, FS8610 automatically removes MAC/IP/TCP header and writes TCP payload into socket FIFO.

The TCP features that FS8610 implemts are listed below.

- Support client/server mode
- Support Push flag transmit and receive
- Support Urgent pointer to transmit and receive Urgent data
- Support programmable MSS (Maximum Segment Size)
- Support TCP header checksum generation and validation
- Support programmable initial sequence number
- Support simultaneous Open state
- Support receiving RST segment
- Support programmable delayed ACK
- Support Sliding Window for bulk data transfer
- Support programmable Persist Timer for probing zero window
- Support Silly Window Syndrome (SWS) Avoidance algorithm
- Support programmable Fast Retransmission for out-of-order TCP segments
- Support programmable Retransmission Timeout (RTO) with exponential backoff
- Support MSS option at TCP option field

6.7. PPPoE (Point-to-Point Protocol over Ethernet)

FS8610 supports PPPoE to connect remote hosts over xDSL device. FS8610 can transmit and receive all PPPoE control packets at Discoverage stage and Session satge. Once PPPoE session is established and IP address is assigned, FS8610 can transmit and receive PPPoE IP (data) packets.

FS8610 supports retransmition and timout for PADI/PADR//LCP configure request/LCP terminate request/NCP configure request /PAP request packets. PPP (Point-to-Point Protocol) are implemented by driver. It includes LCP (Link Control Protocol), PAP (Password Authentication Protocol) and IPCP (Internet Protocol Control Protocol).

6.8. UART

FS8610 supports one high speed UART interface for serila port connection. The UART port can be programmed into Synchronous or Asynchronous mode, Fixed rate or flexible rate. The UART features are listed as below.

- Baud Rate: 1200 ~ 230400
- Data Bits: 7 or 8
- Parity Bit: Even, Odd or None
- Stop Bit: 1
- Flow Control: Hardware (RTS/CTS), Software (Xon/Xoff), None

6.9. GPIO

FS8610 supports 32 GPIOs interface for general purpose application. With the E8051D's high system performance, versatile interfaces like I^2C master, I^2C slave, I^2S and SPI can be emulated easily through GPIO interface by driver.

6.10. SRAM-based External Expansion Interface

FS8610 supports SRAM-based External Expansion interface for external SRAM extensions (above 2MB) or E8051D controllabe devices like JPEG Encoder for IP-CAM application. At most, three external chip select signals (EXT_CSB1 ~ EXT_CSB3) can be activated and programmed at specific address space.

6.11. System Standby & Wake-On-LAN (WOL)

FS8610 supports Standby mode and Shut Down mode to save power consumption. While system is forced into Standby mode, FS8610 can be resumed from wake-up events. Wake-up events includes Magic packet, PHY's Link Status Change and External interrupt. While system is forced into Shut Down mode, FS8610 can only be restarted from Power-on Reset. Shut Down mode is more power saving than Standby mode.

6.12. P-Port ICE Debug Interface

FS8610 supports P-Port ICE Debug interface for software development. With FASP-8610 Development Board and D!T-51 Debug Tool which are provided by FameG, software developmet is easy and efficient for user.

7. System Diagram

7.1. Program Shadow RAM Enable (Single Code Bank)

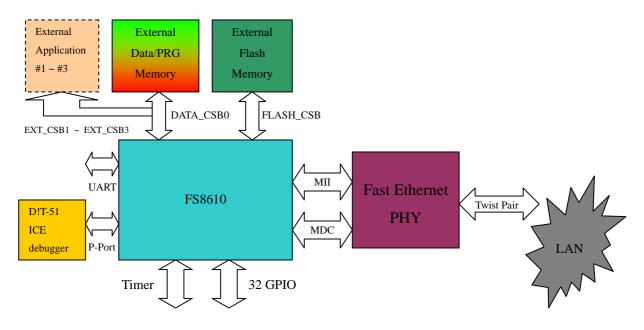
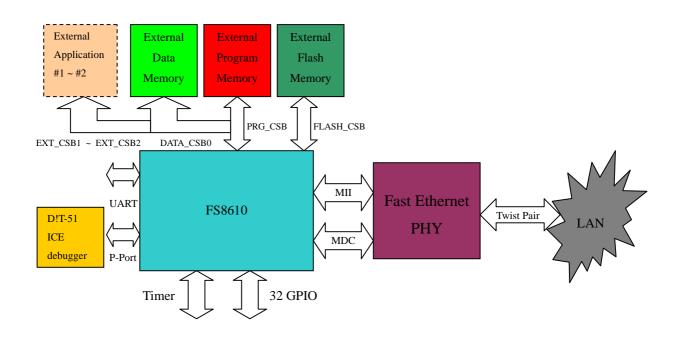



Figure 2. System Diagram of FS8610 with Program Shadow RAM Enable (Single Code Bank)

7.2. Program Shadow RAM Enable (Multiple Code Banks)

The above information is the exclusive intellectual property of FameG and shall not be disclosed, distributed or reproduced without permission from FameG Document No.: Format-ID-ENG-10 Release Date: 02/14/2007

Figure 3. System Diagram of FS8610 with Program Shadow RAM Enable (Multiple Code Banks)

7.3. Program Shadow RAM Disable

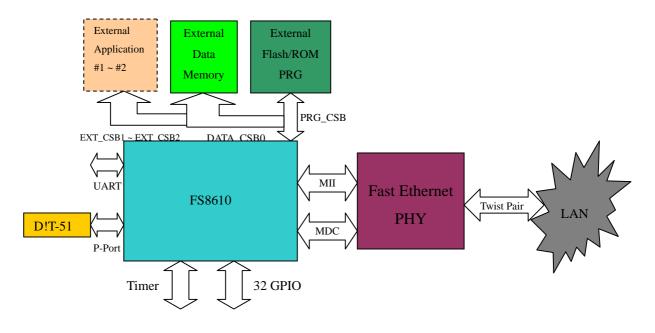


Figure 4. System Diagram of FS8610 with Shadow RAM Disable

8. Electrical Characteristics

8.1. Absolute Maximum Ratings

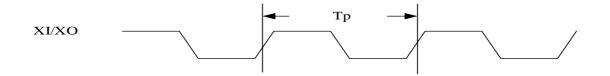
Symbol	Parameter	Min	Max	Unit
V _{DDC}	Core Supply Voltage (DVDD_18)	-0.5	2.5	V
V _{DDPLL}	PLL Supply Voltage (PLLVDD_18)	-0.5	2.5	V
V _{DDIO}	I/O Supply Voltage (DVDD_33)	-0.5	4.6	V
V _{IN}	Input Voltage	-0.5	6	V
V _{OUT}	Output Voltage	-0.5	4.6	V
T _A	Operating Temperature	0	70	°C
Ts	Storage Temperature	-65	150	°C

8.2. Power Consumption (DVDD_33 = 3.3V, DVDD_18 = PLLVDD_18 = 1.8V, TA = 25°C)

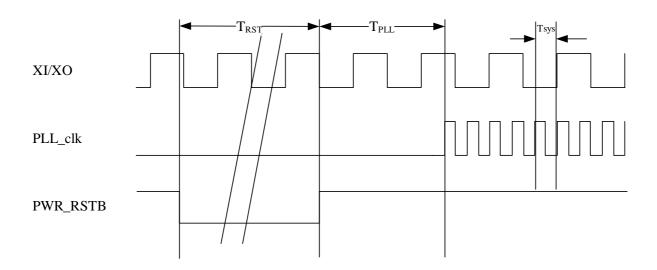
Symbol	Parameter	Condition	Ma	IX	Unit
IDD _{NOR}	Normal mode current	@ 25MHz system clock,	@3.3V	15	mA
		Full channels	@1.8V	45	mA
		@ 100MHz system clock,	@3.3V	25	mA
		Full channels	@1.8V	135	mA
		@ 160MHz system clock,	@3.3V	35	mA
		Full channels	@1.8V	195	mA
IDD _{STB}	Standby mode current	@ 25MHz ~ 160MHz	@3.3V	100	uA
	(system resumed by wake-up event)	system clock	@1.8V	20	mA
IDD _{SHD}	Shut Down mode current	@ 25MHz ~ 160MHz	@3.3V	100	uA
	(system resumed by Power-on Reset)	system clock	@1.8V	200	uA

8.3. DC Characteristics (DVDD_33 = 3.0V ~ 3.6V, DVDD_18 = PLLVDD_18 = 1.62V ~ 1.98V,

$TA = 25^{\circ}C$)	
----------------------	--


Symbol	Parameter	Condition	Min	Тур	Max	Unit
DVDD_18	Core Supply Voltage		1.62	1.8	1.98	V
PLLVDD_18	PLL Supply Voltage		1.62	1.8	1.98	V
DVDD_33	I/O Supply Voltage		3.0	3.3	3.6	V
V _{IL}	Input Low Voltage		-0.3		0.8	V
V _{IH}	Input High Voltage		2.0		5.5	V
V _{OL}	Output Low Voltage	I _{OL} =4.0mA			0.4	V
V _{OH}	Output High Voltage	Ioh=-4.0mA	2.4			V
I _{IL}	Input Leakage Current				+/- 10	uA
I _{OL}	Tristate Output Leakage				+/- 10	uA
	Current					

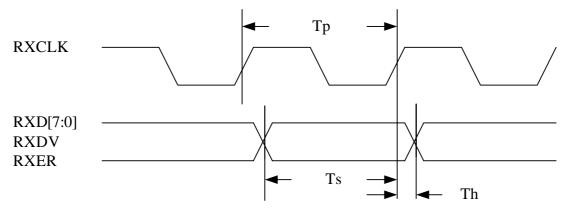
8.4. AC Characteristics (DVDD_33 = 3.0V ~ 3.6V, DVDD_18 = PLLVDD_18 = 1.62V ~ 1.98V,


TA = 25°C)

8.4.1. Crystal/Oscillator Timing

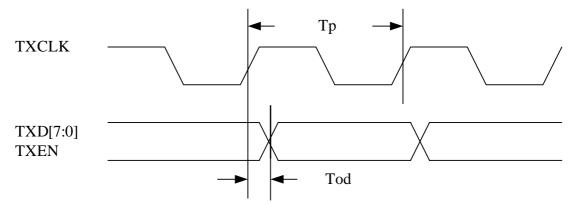
Symbol	Description	Min	Тур	Max	Unit
Тр	Period of XI/XO	40	40	40	ns

8.4.2. Power-on Hardware Reset and PLL Clock Timing


Symbol	Description	Min	Тур	Max	Unit
T _{RST}	Power-on Hardware Reset	100			ms
T _{PLL}	PLL lock duration	50			us
T _{sys}	System Clock period	6.3		40	ns

The above information is the exclusive intellectual property of FameG and shall not be disclosed, distributed or reproduced without permission from FameG Document No.: Format-ID-ENG-10 Release Date: 02/14/2007

Fulhua Microelectronics Corp.

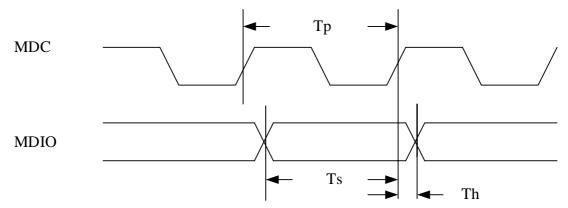

Email: sales@fameg.com Http://www.FameG.com

8.4.3. MII Receiving Timing

Symbol	Description	Min	Тур	Max	Unit
Тр	Period of RXCLK				
	100M		40		ns
	10M		400		
Ts	Setup time of RXD[7:0], RXDV, RXER	2			ns
Th	Hold time of RXD[7:0], RXDV, RXER	2			ns

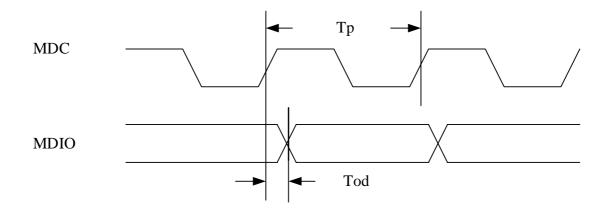
8.4.4. MII Transmitting Timing

Symbol	Description	Min	Тур	Max	Unit
Тр	Period of TXCLK				
	100M		40		ns
	10M		400		
Tod	Output Delay of TXD[7:0], TXEN, TXER			8	ns


The above information is the exclusive intellectual property of FameG and shall not be disclosed, distributed or reproduced without permission from FameG Document No.: Format-ID-ENG-10 Release Date: 02/14/2007

FameG Fulhua Microelectronics Corp.

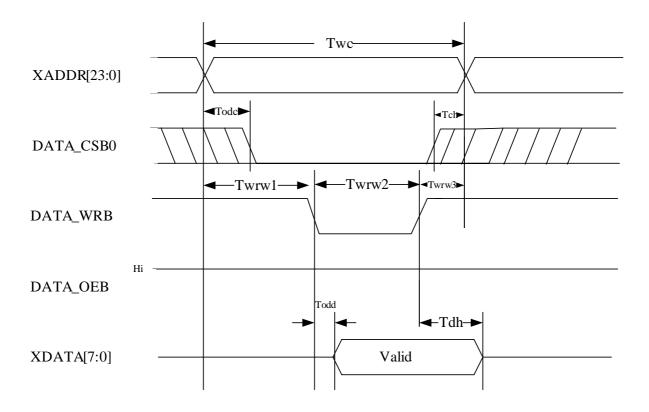
Email: sales@fameg.com Http://www.FameG.com


8.4.5. MII Management Read Timing

Fulhua Microelectronics Corp.

Symbol	Description	Min	Тур	Max	Unit
Тр	Period of MDC	400		787	ns
Ts	Setup time of MDIO	6			ns
Th	Hold time of MDIO	0			ns

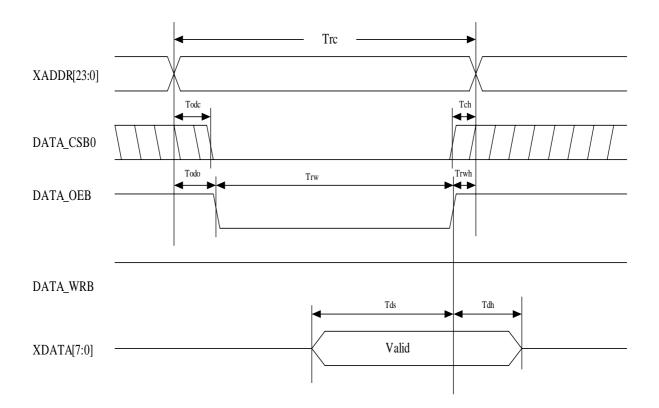
8.4.6. MII Management Write Timing



Symbol	Description	Min	Тур	Max	Unit
Тр	Period of MDC	400		787	ns
Tod	Output Delay of MDIO				
	Tp = 400ns			211	ns
	Tp = 787ns			410	

The above information is the exclusive intellectual property of FameG and shall not be disclosed, distributed or reproduced without permission from FameG Document No.: Format-ID-ENG-10 Release Date: 02/14/2007

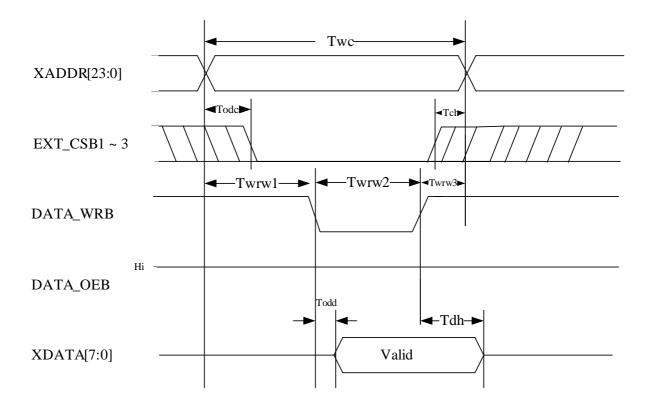
8.4.7. External Main Data Memory Bus Write Timing



Symbol	Description	Min	Тур	Max	Unit
Twc	Write Cycle Time of XADDR	3 * T _{sys}		18 * T _{sys}	ns
Todc	Output Delay of DATA_CSB0		1 * T _{sys}		ns
Tch	Hold Time of DATA_CSB0		1 * T _{sys}		ns
Twrw1	Write Width 1 of DATA_WRB		1 * T _{sys}		ns
Twrw2	Write Width 2 of DATA_WRB	1 * T _{sys}		16 * T _{sys}	ns
Twrw3	Write Width 3 of DATA_WRB		1 * T _{sys}		ns
Todd	Output Delay Time of XDATA			0	ns
Tdh	Data Hold Time of XDATA		1 * T _{sys}		ns

The above information is the exclusive intellectual property of FameG and shall not be disclosed, distributed or reproduced without permission from FameG Document No.: Format-ID-ENG-10 Release Date: 02/14/2007

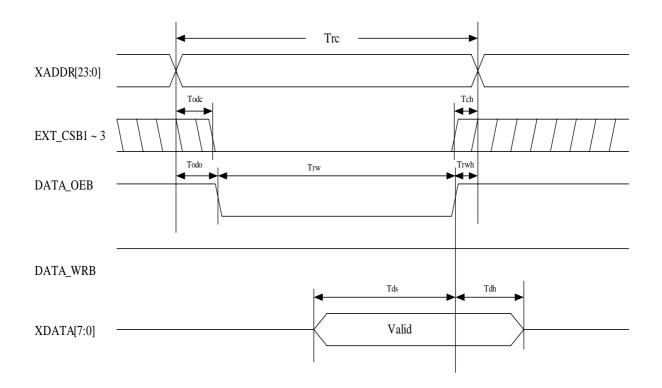
8.4.8. External Main Data Memory Bus Read Timing



Symbol	Description	Min	Тур	Max	Unit
Trc	Read Cycle Time of XADDR	2 * T _{sys}		17 * T _{sys}	ns
Todc	Output Delay of DATA_CSB0			0	ns
Tch	Hold Time of DATA_CSB0			0	ns
Todo	Output Delay of DATA_OEB0			0	ns
Trw	Read Width of DATA_OEB	2 * T _{sys}		17 * T _{sys}	ns
Trwh	Read Hold Time of DATA_OEB			0	ns
Tds	Data setup Time of XDATA	8.5			ns
Tdh	Data Hold Time of XDATA	0.5			ns

The above information is the exclusive intellectual property of FameG and shall not be disclosed, distributed or reproduced without permission from FameG Document No.: Format-ID-ENG-10 Release Date: 02/14/2007

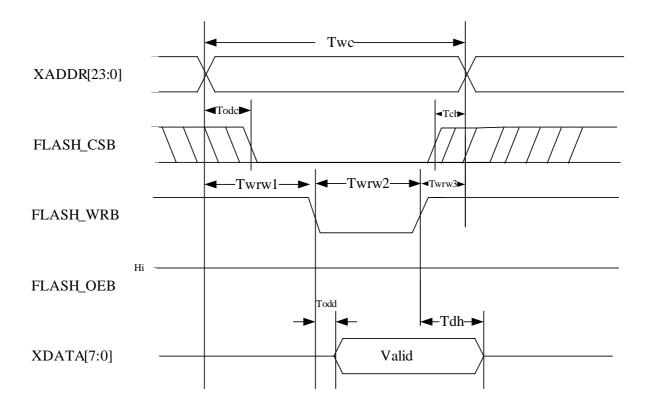
8.4.9. **External Application Expansion Bus Write Timing**



Symbol	Description	Min	Тур	Max	Unit
Twc	Write Cycle Time of XADDR	4 * T _{sys}		18 * T _{sys}	ns
Todc	Output Delay of EXT_CSB1 ~ 3			0	ns
Tch	Hold Time of EXT_CSB1 ~ 3			0	ns
Twrw1	Write Width 1 of DATA_WRB		1 * T _{sys}		ns
Twrw2	Write Width 2 of DATA_WRB	1 * T _{sys}		15 * T _{sys}	ns
Twrw3	Write Width 3 of DATA_WRB		2 * T _{sys}		ns
Todd	Output Delay Time of XDATA			0	ns
Tdh	Data Hold Time of XDATA		2 * T _{sys}		ns

The above information is the exclusive intellectual property of FameG and shall not be disclosed, distributed or reproduced without permission from FameG Document No.: Format-ID-ENG-10 Release Date: 02/14/2007

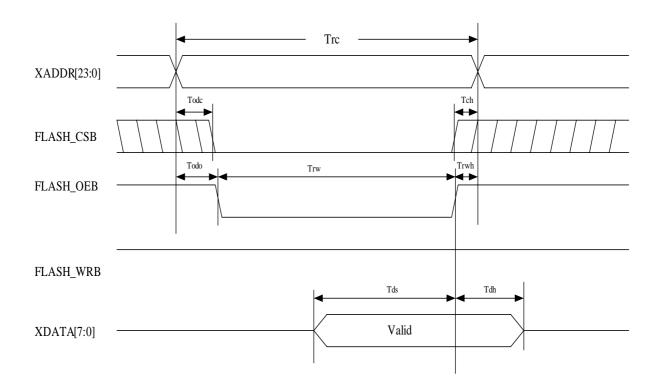
8.4.10. External Application Expansion Bus Read Timing



Symbol	Description	Min	Тур	Max	Unit
Trc	Read Cycle Time of XADDR	2 * T _{sys}		16 * T _{sys}	ns
Todc	Output Delay of EXT_CSB1 ~ 3			0	ns
Tch	Hold Time of EXT_CSB1 ~ 3			0	ns
Todo	Output Delay of DATA_OEB0			0	ns
Trw	Read Width of DATA_OEB	2 * T _{sys}		16 * T _{sys}	ns
Trwh	Read Hold Time of DATA_OEB			0	ns
Tds	Data setup Time of XDATA	8.5			ns
Tdh	Data Hold Time of XDATA	0.5			ns

The above information is the exclusive intellectual property of FameG and shall not be disclosed, distributed or reproduced without permission from FameG Document No.: Format-ID-ENG-10 Release Date: 02/14/2007

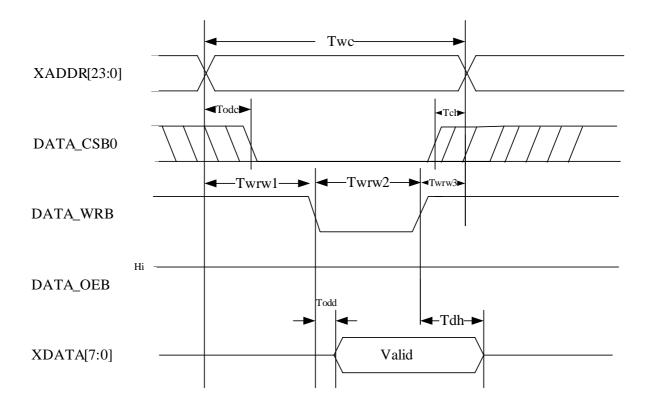
8.4.11. External Flash/ROM Memory Bus Write Timing



Symbol	Description	Min	Тур	Max	Unit
Twc	Write Cycle Time of XADDR	11 * T _{sys}		18 * T _{sys}	ns
Todc	Output Delay of FLASH_CSB			0	ns
Tch	Hold Time of FLASH_CSB			0	ns
Twrw1	Write Width 1 of FLASH_WRB		1 * T _{sys}		ns
Twrw2	Write Width 2 of FLASH_WRB	9 * T _{sys}		16 * T _{sys}	ns
Twrw3	Write Width 3 of FLASH_WRB		1 * T _{sys}		ns
Todd	Output Delay Time of XDATA			0	ns
Tdh	Data Hold Time of XDATA		1 * T _{sys}		ns

The above information is the exclusive intellectual property of FameG and shall not be disclosed, distributed or reproduced without permission from FameG Document No.: Format-ID-ENG-10 Release Date: 02/14/2007

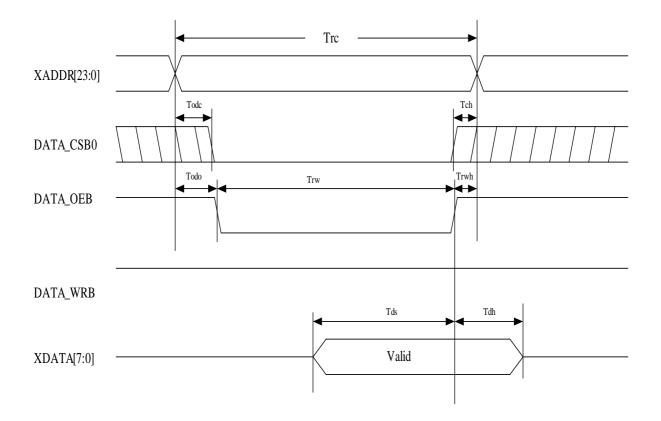
8.4.12. External Flash/ROM Memory Bus Read Timing



Symbol	Description	Min	Тур	Max	Unit
Trc	Read Cycle Time of XADDR	9 * T _{sys}		16 * T _{sys}	ns
Todc	Output Delay of FLASH_CSB			0	ns
Tch	Hold Time of FLASH_CSB			0	ns
Todo	Output Delay of FLASH_OEB			0	ns
Trw	Read Width of FLASH_OEB	9 * T _{sys}		16 * T _{sys}	ns
Trwh	Read Hold Time of FLASH_OEB			1.1	ns
Tds	Data setup Time of XDATA	8			ns
Tdh	Data Hold Time of XDATA	0.5			ns

The above information is the exclusive intellectual property of FameG and shall not be disclosed, distributed or reproduced without permission from FameG Document No.: Format-ID-ENG-10 Release Date: 02/14/2007

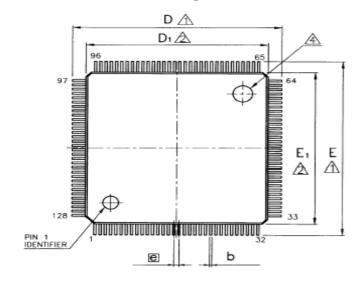
8.4.13. External Program Memory Bus Write Timing



Symbol	Description	Min	Тур	Max	Unit
Twc	Write Cycle Time of XADDR	4 * T _{sys}		18 * T _{sys}	ns
Todc	Output Delay of DATA_CSB0			0	ns
Tch	Hold Time of DATA_CSB0			1 * T _{sys}	ns
Twrw1	Write Width 1 of DATA_WRB		1 * T _{sys}		ns
Twrw2	Write Width 2 of DATA_WRB	9 * T _{sys}		16 * T _{sys}	ns
Twrw3	Write Width 3 of DATA_WRB		1 * T _{sys}		ns
Todd	Output Delay Time of XDATA			0	ns
Tdh	Data Hold Time of XDATA		1 * T _{sys}		ns

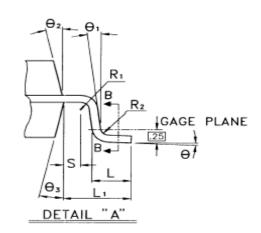
The above information is the exclusive intellectual property of FameG and shall not be disclosed, distributed or reproduced without permission from FameG Document No.: Format-ID-ENG-10 Release Date: 02/14/2007

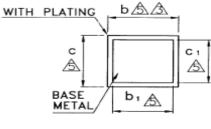
8.4.14. External Program Memory Bus Read Timing



	Description	Min	Тур	Max	Unit
Symbol					
Trc	Read Cycle Time of XADDR	2 * T _{sys}		8 * T _{sys}	ns
Todc	Output Delay of DATA_CSB0			0	ns
Tch	Hold Time of DATA_CSB0			0	ns
Todo	Output Delay of DATA_OEB			0	ns
Trw	Read Width of DATA_OEB	2 * T _{sys}		8 * T _{sys}	ns
Trwh	Read Hold Time of DATA_OEB			0	ns
Tds	Data setup Time of XDATA	8.5			ns
Tdh	Data Hold Time of XDATA	0.5			ns

The above information is the exclusive intellectual property of FameG and shall not be disclosed, distributed or reproduced without permission from FameG Document No.: Format-ID-ENG-10 Release Date: 02/14/2007


9. 128L LQFP Package Dimension (14 x 14 x 1.4 mm)



-10.08C

A A2

AA1

SECTION	B - B

Symbol	Dir	nension	in mm	Dimer	nsion in	inch	
Symbol	Min	Nom	Max	Min	Min Nom		
A			1.60			0.063	
A1	0.05			0.002		—	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
b	0.13	0.18	0.23	0.005	0.007	0.009	
b1	0.13	0.16	0.19	0.005	0.006	0.007	
С	0.09		0.20	0.004		0.008	
C 1	0.09		0.16	0.004		0.006	
D	15.85	16.00	16.15	0.624	0.630	0.636	
Dı	13.90	14.00	14.10	0.547	0.551	0.555	
E	15.85	16.00	16.15	0.624	0.630	0.636	
E1	13.90	14.00	14.10	0.547	0.551	0.555	
e	0.40 BSC			0.	016 BS	SC	
L	0.45	0.60	0.75	0.018	0.024	0.030	
Lı	1.	00 RE	F	0.	039 RE	F	
R1	0.08			0.003			
R2	0.08		0.20	0.003		0.008	
S	0.20			0.008		—	
θ	0*	3.5*	7°	0.	3.5*	7'	
θ1	0.			o. — —			
θ ₂		12 • TYP		12°TYP			
O3		12 . TYP		12°TYP			

10. Revision History

Release	Date	Author	Modification
0.1	09/04/2006	Huai-Chih Ma	1. Initial Release.
0.2	10/11/2006	Huai-Chih Ma	1. Update Shadow SRAM function description.
1.0	12/26/2006	Huai-Chih Ma	1. Update Power Consumption current value at all operation modes.
1.1	01/31/2007	Huai-Chih Ma	 Modify the pin name of pin 103, 126 ~ 128 of Pin Configuration block to match with Pin Description name. Remove DoCD character
2.0	02/14/2007	Huai-Chih Ma	1. Update Generation Descriptions, Features, Block Diagram and Functional Description.