

# 目 录

| 第一 | 章              | 产品简介     | 1  |
|----|----------------|----------|----|
|    | 1.1            | 产品概述     | 1  |
|    | 1.2            | 性能特点     | 1  |
|    | 1.3            | 产品外观     | 1  |
|    | 1.4            | 产品运用方案图  | 2  |
| 第二 | 章              | 系统描述     | 3  |
|    | 2.1            | 系统指标     | 3  |
|    | 2.2            | 系统结构框图   | 4  |
|    | 2.3            | 模块结构     | 5  |
|    | 2.4            | 模块安装     | 5  |
| 第三 | 章              | 模块功能及实现  | 6  |
|    | 3.1            | 引脚定义     | 6  |
|    | 3.3            | 模式选择     | 9  |
|    | 3.3            | 光纤接口     | 9  |
|    | 3.4            | 以太网电口    | 11 |
|    | 3.5            | 电源告警信息采集 | 11 |
|    | 3.6            | 设备告警输出   | 12 |
|    | 3.7            | LED指示灯   | 12 |
|    | 3.8            | 网管接口     | 13 |
|    | 3.9            | 系统连接     | 13 |
| 第四 | 章              | 模块检测     | 15 |
|    | 4.1            | 上电检测     | 15 |
|    | 4.2            | 电口检测     | 15 |
|    | 4.3            | 光口检测     | 17 |
| 附录 | A常             | 7用接口     | 18 |
|    | A-1            | RJ45     | 18 |
|    | A-2            | DB9      | 18 |
|    | A-3            | 常用光纤接头类型 | 19 |
| 附录 | R <del>∦</del> | ·连解析     | 21 |



## 第一章 产品简介

#### 1.1 产品概述

在当前的工业系统中的各种设备已普遍实现了智能化,工业系统中最常用的PLC、RTU、FTU、TTU、数据采集模块等先进的工业设备已基本实现了智能化及网络化;随着电信以太网技术的迅猛发展和普及,将以太网技术应用于工业系统中已成为不争的事实,工业以太网技术发展迅速,工业以太网产业发展的速度令人震惊。

801M 是三旺通信技术有限公司专为工业应用而开发的高性能、低成本嵌入式工业以太 网交换机模块。该模块具有100M以太网环网结构,支持全局网管。用户通过简单配置即可 实现形式多样的工业以太网交换机,或者通过在工业设备中嵌入该模块,就能轻易为用户设备带来具有工业性能的冗余环网功能。

#### 1.2 性能特点

即插即用快速以太网冗余环状拓扑结构。支持基于快速生成树算法的S-Ring环网技术。 支持30台设备组环。

全负载情况下线路故障恢复时间小于300ms,增强了系统通信的可靠性。

支持6个10Base-T/100Base-TX自适应的以太网接口,和2个100Base-FX冗余光纤接口。 电口支持MDI/MDI-X自动连接。

支持基于端口的VLAN标准以便利于网络规划,控制广播域和网段流量,提高网络安全性和可管理性。

支持广播风暴抑制功能。

支持MAC地址过滤功能。

支持优先级及接口速率的设置与查询,提高数据传送的确定性。

支持电源、端口链路及环网状态的本地告警和远端告警。

支持告警信息继电器输出。

网管通道独立于业务通道之外,不影响业务通道带宽,在确保系统100M线速基础上,提供基于串口的全局网管平台。

#### 1.3 产品外观

801M 工业以太网交换机嵌入模块的外观形状如图1-1所示。



图1-1 模块与评估板应用实物图



## 1.4 产品运用方案图

801M 工业以太网交换机嵌入模块的产品运用方案如图1-2所示。

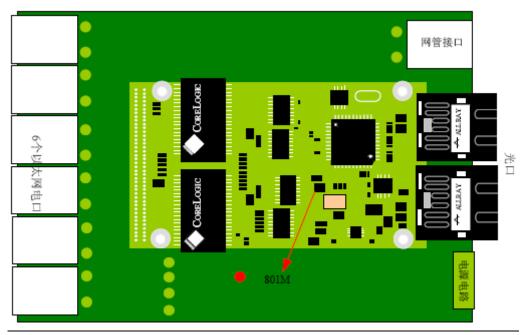



图1-2 801M应用方案图



# 第二章 系统描述

## 2.1 系统指标

801M 工业以太网交换机嵌入模块的系统性能指标如表2-1所示。

## 表2-1: 801M 工业以太网交换机嵌入模块的系统性能指标

| 系统指标 | 表2-1: 801M 工业以太州交换机嵌入模块的系统性能指标<br>801M         |
|------|------------------------------------------------|
|      |                                                |
| 电口   | 支持6个10Base-T/100Base-TX以太网接口                   |
|      | 支持10M/100M,全双工/半双工自适应或强制工作模式                   |
|      | 支持MDI/MDI-X功能                                  |
|      | 符合IEEE802.3标准                                  |
|      | 传输距离<100米                                      |
|      | 板上内置电磁隔离变压器                                    |
|      | 支持1000V电磁隔离保护                                  |
|      | 支持全电口掉线指示                                      |
| 光口   | 支持2个100Base-FX全双工冗余光纤接口                        |
|      | 支持3.3V电压LVPECL电平                               |
|      | 支持各种单模、多模,单纤、双纤光器件                             |
|      | 光口速率125MHz                                     |
| 系统参数 | 支持IEEE802.3、IEEE802.3x、IEEE802.3u、IEEE802.1Q标准 |
|      | 支持30个设备同时组环                                    |
|      | 全负载情况下线路故障恢复时间小于300ms                          |
|      | 转发速度: 148810pps                                |
|      | 最大过滤速度: 148810pps                              |
|      | 传输方式:存储转发                                      |
|      | 系统交换带宽: 4.8G                                   |
|      | 支持8K MAC地址表                                    |
|      | 支持基于端口的VLAN协议                                  |
|      | 支持16个VLAN ID,可全网组建16个VLAN                      |
| 网管串口 | 采用TTL电平串行接口,可外接MAX232转换为RS-232接口(三线)           |
|      | 接口速率19200bps                                   |
|      | 支持电源、端口链路及环网状态的本地告警和远端告警                       |
|      | 支持1路3.3V LVTTL电平告警信息输出                         |
| 电源   | 5V直流输入(电压范围支持3.6V-5.5V)                        |
| 204  | 电源功耗典型值3.38W,最大5.5W(包含光模块功耗)                   |
|      | 内置过流保护                                         |
|      | 支持双电源备份                                        |
|      | 支持双电源告警信息输入                                    |
| 结构   | 95mm×58mm                                      |
| >H1" | 固定方式采用4个Φ2.5mm孔径连接拄,孔间距50mm×77mm               |
|      | 光模块信号采用2个9引脚2.54mm间隙单排插针,针宽0.7mm               |
|      | 其他信号采用1个80引脚1.27mm间隙双排插针,针宽0.4mm               |
|      | 丹旭市与不用1年80分                                    |



工作环境 工作温度: -35℃~75℃ 存储温度: -45℃~85℃ 湿 度: 10%~95%(无凝露)

#### 2.2 系统结构框图

801M 工业以太网交换机嵌入模块的系统硬件框图如图2-1所示。

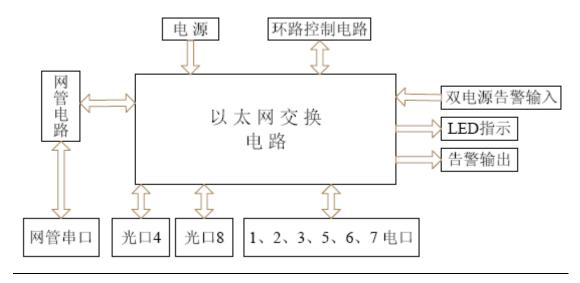



图2-2 光纤模块系统硬件框图

系统硬件主要由以下几块组成:

- 1、以太网交换电路 采用高性能ASIC交换芯片,实现以太网数据包的二层线速转发。
- 2、环路控制电路 采用FPGA芯片,实现S-Ring环网协议,及控制电路。
- 3、网管电路 采用高性能8位单片机,实现基于串口的全局网管平台。
- 4、电源告警输入电路 实现两路电源告警信息采集。
- 5、告警输出电路 实现电源、端口链路及环网状态的本地告警和远端告警。
- 6、 电源 实现电源管理、过流、过压、EMC保护。



## 2.3 模块结构

801M 工业以太网交换机嵌入模块的结构尺寸如图2-2和表2-1所示所示。

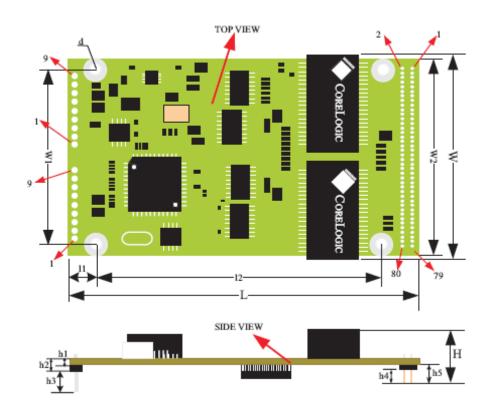



图2-2 光纤模块结构尺寸图

表2-1: 光纤模块结构尺寸说明

| unit: | mm |
|-------|----|

| d  | 2.5  | w2 | 56.0 | 12 | 77.0 | h2 | 1.4 | h5 | 4.4 |
|----|------|----|------|----|------|----|-----|----|-----|
| W  | 58.0 | L  | 95.0 | Н  | 12.2 | h3 | 5.7 |    |     |
| w1 | 50.0 | 11 | 8.05 | h1 | 1.6  | h4 | 3.4 |    |     |

## 2.4 模块安装

801M 工业以太网交换机嵌入模块的安装示意图如图2-3所示。

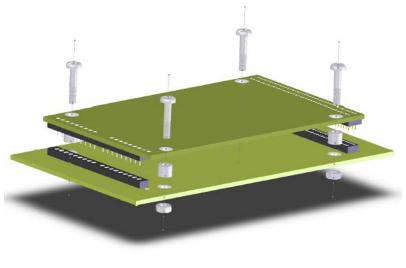



图2-3 模块的安装示意图



## 第三章 模块功能及实现

## 3.1 引脚定义

801M 工业以太网交换机嵌入模块的光纤模块接口引脚定义如图3-1所示。

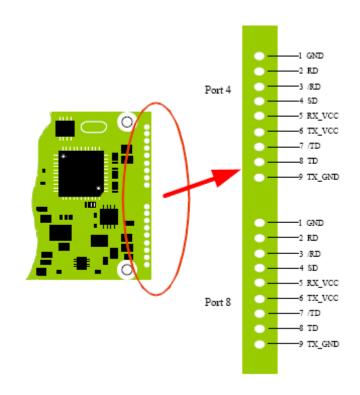



图3-1 光纤模块接口引脚定义(顶视图)

801M 工业以太网交换机嵌入模块的光纤模块接口引脚功能描述如表3-1所示。

表3-1 801M工业以太网交换机嵌入模块的光纤模块接口引脚功能描述

| 引脚名称   | 编号   | 方向 | 功能描述                            |
|--------|------|----|---------------------------------|
| GND    | 1, 9 |    | 电源地                             |
| RD     | 2    | Ι  | 3.3V LVPECL电平数据接收差分信号对,接收正,该引脚从 |
|        |      |    | 光模块接收信号。                        |
| /RD    | 3    | I  | 3.3V LVPECL电平数据接收差分信号对,接收负,该引脚从 |
|        |      |    | 光模块接收信号。                        |
| SD     | 4    | Ι  | 3.3V LVPECL电平有光无光指示,该引脚从光模块接收信  |
|        |      |    | 号。                              |
| RX_VCC | 5    | О  | 3.3V 光模块接收电路供电电源引脚              |
| TX_VCC | 6    | О  | 3.3V 光模块发送电路供电电源引脚              |
| /TD    | 7    | О  | 3.3V LVPECL电平数据发送差分信号对,发送负,该引脚向 |
|        |      |    | 光模块发送信号。                        |
| TD     | 8    | 0  | 3.3V LVPECL电平数据发送差分信号对,发送正,该引脚向 |
|        |      |    | 光模块发送信号。                        |



801M 工业以太网交换机嵌入模块的其它接口引脚定义如图3-2所示。

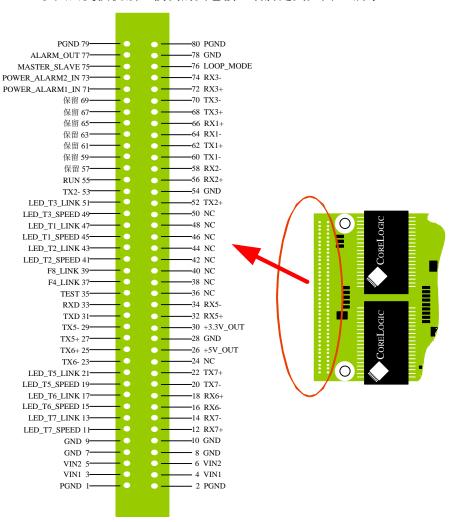



图3-2 其它接口引脚定义(顶视图)

801M 工业以太网交换机嵌入模块的其它接口引脚功能描述如表3-2所示。

表3-2 801M模块的其它接口引脚功能描述

| 引脚名称         | 编号           | 方向  | 功能描述                 |
|--------------|--------------|-----|----------------------|
|              | 电源及地         | 线引脚 |                      |
| PGND         | 1, 2, 79, 80 |     | 保护地,机壳地              |
| VIN1         | 3、4          | I   | 5V输入                 |
| VIN2         | 5, 6         | I   | 5V输入                 |
| GND          | 7、8、9、10、28、 |     |                      |
|              | 54、78        |     |                      |
| +5V_OUT      | 26           | О   | 5V板级电源输出,最大输出100mA   |
| +3.3V_OUT    | 30           | О   | 3.3V板级电源输出,最大输出100mA |
|              | LED‡         | 指示  |                      |
| LED_T1_SPEED | 45           | O   | 以太网电口速率指示, 低电平指示     |
| LED_T2_SPEED | 41           |     | 100M,高电平指示10M。       |
| LED_T3_SPEED | 49           |     | 3.3V电平开漏结构。          |
| LED_T5_SPEED | 19           |     |                      |
| LED_T6_SPEED | 15           |     |                      |



| LED_T7_SPEED    | 11     |                |                                      |  |
|-----------------|--------|----------------|--------------------------------------|--|
| LED_T1_LINK     | 47     | 0              | 以太网电口连接指示,低电平指示连                     |  |
| LED_T2_LINK     | 43     |                | 接,高电平指示无连接,闪烁指示有                     |  |
| LED_T3_LINK     | 51     |                | 数据。                                  |  |
| LED_T5_LINK     | 21     |                | 3.3V电平开漏结构。                          |  |
| LED_T6_LINK     | 17     |                |                                      |  |
| LED_T7_LINK     | 13     | 1              |                                      |  |
| F4_LINK         | 37     | 0              | 光口连接指示,低电平指示连接,高<br>电平指示无连接,闪烁指示有数据。 |  |
| F8_LINK         | 39     |                | 3.3V电平开漏结构。                          |  |
| RUN             | 55     | О              | 系统运行指示,低电平指示主站工作<br>状态,闪烁指示从站工作状态    |  |
|                 | 电      |                |                                      |  |
| RX1+            | 66     | I              | 以太网电口数据接收差分信号对,                      |  |
| RX2+            | 56     |                | 接收正                                  |  |
| RX3+            | 72     |                |                                      |  |
| RX5+            | 32     |                |                                      |  |
| RX6+            | 18     |                |                                      |  |
| RX7+            | 12     |                |                                      |  |
| RX1-            | 64     | I              | 以太网电口数据接收差分信号对,                      |  |
| RX2-            | 58     |                | 接收负                                  |  |
| RX3-            | 74     |                |                                      |  |
| RX5-            | 34     |                |                                      |  |
| RX6-            | 16     |                |                                      |  |
| RX7-            | 14     |                |                                      |  |
| TX1+            | 62     | I              | 以太网电口数据发送差分信号对,                      |  |
| TX2+            | 52     |                | 发送正                                  |  |
| TX3+            | 68     |                |                                      |  |
| TX5+            | 27     |                |                                      |  |
| TX6+            | 25     |                |                                      |  |
| TX7+            | 22     |                |                                      |  |
| TX1-            | 60     | I              | 以太网电口数据发送差分信号对,                      |  |
| TX2-            | 53     |                | 发送负                                  |  |
| TX3-            | 70     |                |                                      |  |
| TX5-            | 29     |                |                                      |  |
| TX6-            | 23     |                |                                      |  |
| TX7-            | 20     |                |                                      |  |
|                 | 网管     | <del>,</del> П |                                      |  |
| TXD             | 31     | 0              | 5V TTL电平串行数据发送信号                     |  |
| RXD             | 33     | I              | 5V TTL电平串行数据接收信号                     |  |
|                 | 上<br>二 | 数              |                                      |  |
| POWER_ALARM1_IN | 71     | Ι              | 电源1告警输入,3.3V LVTTL电平,<br>高电平告警       |  |
|                 |        |                |                                      |  |



| POWER_ALARM2_IN | 73                  | I  | 电源2告警输入,3.3V LVTTL电平, |
|-----------------|---------------------|----|-----------------------|
|                 |                     |    | 高电平告警                 |
| ALARM_OUT       | 77                  | О  | 告警输出,3.3V LVTTL电平,高有  |
|                 |                     |    | 效                     |
|                 | 模式注                 | 选择 |                       |
| MASTER_SLAVE    | 75                  | I  | 主从模式选择,3.3V LVTTL电平,  |
|                 |                     |    | 输入高为从站,输入低为主站         |
| LOOP_MODE       | 76                  | I  | 环路功能选择,3.3V LVTTL电平,  |
|                 |                     |    | 输入高支持环路操作,输入低不支       |
|                 |                     |    | 持环路操作,该模式光口可与光纤       |
|                 |                     |    | 收发器对通。                |
|                 | 其'                  | 它  |                       |
| TEST            | 35                  |    | 出厂测试用,请悬空             |
| NC              | 36、38、40、42、44、     |    | 未使用引脚,请悬空             |
|                 | 46、48、50            |    |                       |
| 保留              | 57, 59, 61, 63, 65, |    | 保留引脚,请悬空              |
|                 | 67、69               |    |                       |

## 3.3 模式选择

801M通过配置MASTER\_SLAVE引脚实现主(MASTER)从(SLAVE)模式选择,该引脚设置为高电平(或悬空)将配置801M为从(SLAVE)模式,该引脚设置为低电平将配置801M为主(MASTER)模式。由于801M组环采用单主结构,因此整个系统必须有一个且必须只有一个801M配置为主(MASTER)模式,其它801M必须配置为从(SLAVE)模式。

#### 3.3 光纤接口

801M具有2个冗余的100base-FX全双工光纤接口,端口号为4和8。该接口采用3.3V LVPECL电平信号设计,可以直接外接各种3.3V LVPECL电平单模、多模,单纤、双纤光器件。连接电路如图3-3所示。

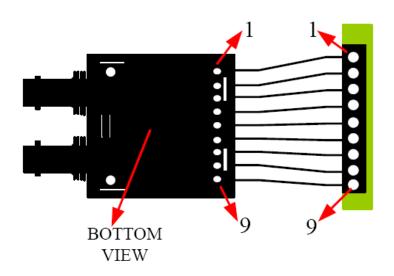



图3-3 光纤接口接线图



上图中光器件的采用的是801M模块板级电源,用户亦可采用外部电源给其供电,以减少801M上的供电压力。

801M光纤接口必须成对使用,每一个801M的同一个光纤接口的OUT口为光发送端,IN口为光接收端,分别连接另一个801M模块的同一个光纤接口的IN口和OUT口。利用2对冗余的100Base-FX光纤接口可以组成光纤冗余环网,全负载情况下在系统出现故障时环网倒换时间小于300ms。环网连接示意图如图3-4所示。注意正确和错误接线之间的区别。

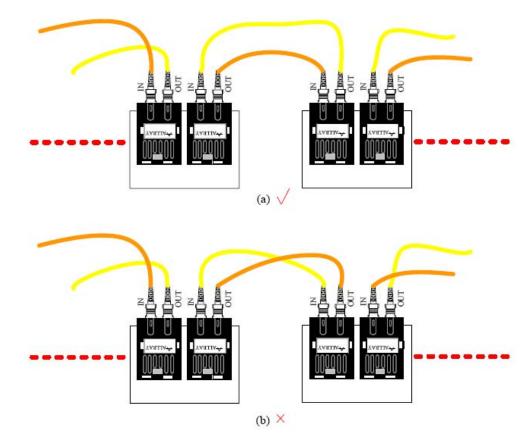
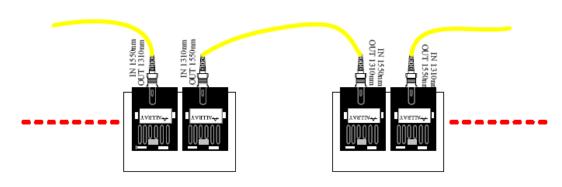
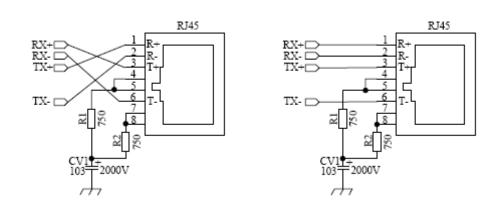



图3-4 光纤接口组网接线图(双纤), 其中(a)是正确接法, (b)是错误接法

当光器件选用单纤双向器件时,由于单纤双向光器件发送和接收采用了不同的波长(常见的为1550nm和1310mm两个波长,例如一个单纤双向光器件采用1550nm作为发射波长,而1310nm作为接收波长,那么它必须与另一个以1550nm作为接收波长,1310作为发送波长的单纤双向光器件进行匹配才可以正常通信),所以建议每块801M配备的两个单纤双向光器件必须成对采购和使用,并固定安装顺序,确保所有801M都一致。连线示意图见图3-5所示。





图3-5 单纤接线示意图



实际工作中有时需要801M能够与光纤收发器光口对通,801M支持这种工作方式,通过配置LOOP\_MODE引脚为低电平,801M将取消环路光口的环路功能和网管功能,从而实现与光纤收发器光口对通。此时801M不再具有环路组网功能和网管功能,系统忽略主从设置。

#### 3.4 以太网电口

801M具有6个以太网10/100M电口,遵循10Base-T/100Base-TX以太网标准。端口号分别为1、2、3、5、6、7。支持10M/100M,全双工/半双工自适应或强制工作模式,支持MDI/MDI-X功能,支持以太网直通线和交叉线连接。由于801M板上集成了以太网电磁隔离变压器,所以只需连接一个RJ45座即可实现以太网功能。连线示意图见图3-6。



750指75ohm 1% 电阻

图3-6 RJ45座接线图(左为交叉线连接,右为直通线连接)

如果不考虑对扩展的以太网电口进行网管的需要,理论上可以通过外接以太网交换机实现以太网口扩展。

#### 3.5 电源告警信息采集

801M提供两路电源告警信息输入引脚,用于实现两路电源的工作状况采集功能。该引脚采用3.3V LVTTL电平,可支持5V电平输入。图3-7是一种典型的电源告警信号采集电路。

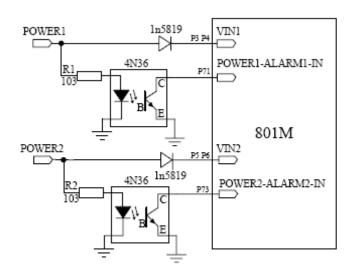



图3-7 典型的电源告警信号采集电路图



当电源告警不被使用时,该引脚亦可以用于采集其它TTL电平告警信号。其实通过网管接口不断的访问该设备电源告警信息比特,用户还可以实现两路开关量信号采集功能。

#### 3.6 设备告警输出

801M提供一路设备告警输出信号,该输出信号支持电源、端口链路及环网状态的本地告警和远端告警。该信号采用3.3V LVTTL电平输出,通过网管软件的配置,用户可以定义告警输出信号的触发条件。当设备工作在SLAVE模式时,该告警输出仅对本端告警有效。当设备工作在MASTER模式时,该告警输出不仅对本端告警有效,而且对环网上的所有设备的远端告警同时有效。图3-8是一种典型的告警信号继电器输出电路。

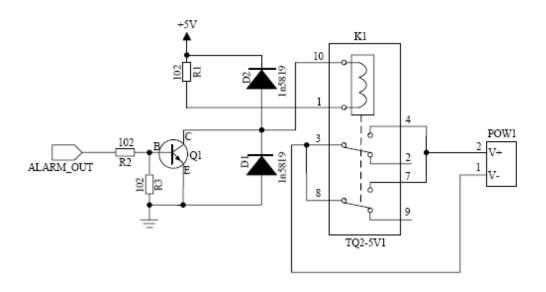



图3-8 典型的告警信号继电器输出电路

#### 3.7 LED指示灯

801M提供大量的LED指示信号输出,用于直观的显示设备的各种工作状态。采用集电极开路设计,加上限流电阻可以直接驱动LED发光二极管。

图3-9是LED连接示意图。

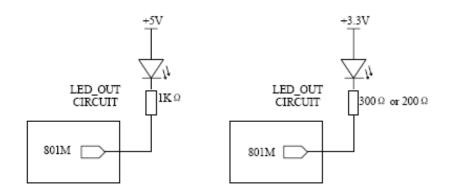



图3-9 LED连接示意图



#### 3.8 网管接口

801M提供居于三线串口的全局网管,网管内容十分丰富。该三线串口采用5V TTL电平,通过外扩MAX232系列芯片很容易实现串口网管功能(推荐电路见图3-10)。用户亦可通过MCU进行管理控制(推荐电路见图3-11),或者通过外接RS-232到以太网模块实现居于以太网的网管系统(推荐电路见图3-12,该电路采用了本公司的RS-232 TTL电平到以太网模块M4000T)。

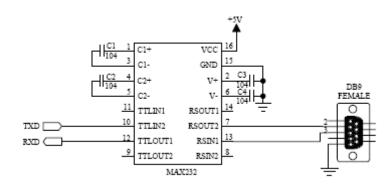



图3-10 串口网管推荐电路

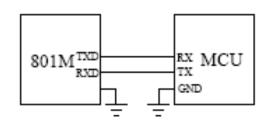



图3-11 MUC进行网管电路

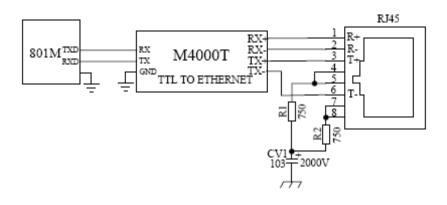
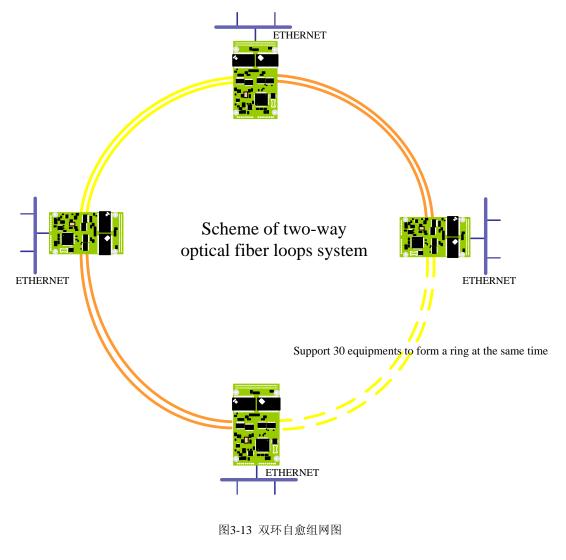




图3-12 采用模块M4000T进行网管电路

## 3.9 系统连接

801M是居于环网结构的工业以太网产品,其实际施工可参考图3-13和图3-14所示进行 光纤连接。





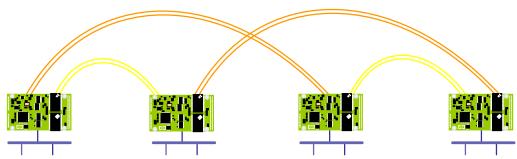



图3-14 链形结构组网图



## 第四章 模块检测

#### 4.1上电检测

模块上的5个LED指示灯(绿)作状态指示,说明通电、工作正常与否等状态情况,易于判断模块的工作情况。LED在模块上的分布指示如图4-1所示。

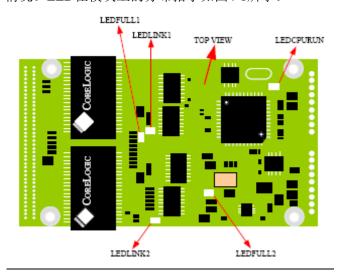



图 4-1 801M 模块上的 LED 分布图

无网络链接时,在允许的电源(3.6V~5.0VDC)输入,如果 5 个 LED 能瞬间依次亮起,此后,LEDCPURUN 闪烁,LEDFULL1、LEDFULL2、LEDLINK1、LEDLINK2 常亮,说明上电正常,模块能够正常工作。在正常通信状态下,LEDLINK1、LEDLINK2 会与数据的收发同步闪烁,其余 3 个 LED 显示与上电正常的状态显示一样。

在确定上电正常的情况下(上电符合要求),根据 LED 状态显示判断模块出现异常现象分析:

LEDCPURUN: 不亮,说明 CPU 与 FPGA 的控制配置不匹配,程序指令有冲突,无法写入控制。

LEDFULL1、LEDFULL2:不亮,说明相对应的8995芯片不能正常进行工作,需进一步检测芯片是否已经坏掉。

LEDLINK1、LEDLINK2: 快速闪烁(通信过程中),说明处于模块工作不正常或网络出现了广播风暴。

注:(1)LED 指示灯不亮,可能是 LED 指示灯已坏或模块上电过程中出现异常引起的。

(2) LED 指示灯灰暗,说明上电电压不够(允许 3.6V~5.0VDC 输入)。

## 4.2 电口检测

检测之前,我们先来了解下 Ping 命令。Ping 是测试网络联接状况以及信息包发送和接收状况非常有用的工具,是网络测试最常用的命令。Ping 向目标主机(地址)发送一个回送请求数据包,要求目标主机收到请求后给予答复,从而判断网络的响应时间和本机是否与目标主机(地址)联通。特别是 Ping 能够识别连接的二进制状态(也就是是否连通)。

Ping.exe, Ping.exe 是系统自带的工具,从 98 到最新的 XP 版的计算机都带有这个命令行工具,命令格式为: Code:ping IP 地址或主机名 [-t] [-a] [-n count] [-l size]



| 参数       | 参数说明                         |
|----------|------------------------------|
| -t       | 不停地向目标主机发送数据                 |
| -a       | 以 IP 地址格式来显示目标主机的网络地址        |
| -n count | 指定要 Ping 多少次,具体次数由 count 来指定 |
| -1 size  | 指定发送到目标主机的数据包的大小             |

Ping 命令的 4 种返回结果说明:

- 1、"Request timed out."表示没有收到目标主机返回的响应数据包,也就是网络不通或网络状态恶劣
- 2、"Reply from X.X.X.X." bytes=32 time<1ms TTL=255"表示收到从目标主机 X.X.X.X返回的响应数据包,数据包大小为 32Bytes,响应时间小于 1ms TTL为 255,这个结果表示您的计算机到目标主机之间连接正常。
- 3、"Destination host unreachable"表示目标主机无法到达。
- 4、"PING: transmit failed,error code XXXXX"表示传输失败,错误代码 XXXXX。 点击开始>运行,win98/me 输入 command,win2000 以上输入 cmd 打开命令提示符窗口 (也可以在"运行"里输入要 Ping 的内容)。下面显示 Ping 输出的示例:

C:\>ping -t 220.181.37.5 -1 64

Reply from 220.181.37.5: bytes=64 time=75ms TTL=53

•••

对 Ping 命令有所了解后,我们将对单模块进行电口测试,如图 4-2,选取 6 电口中的任一电口与其余电口通过与 PC 连接进行通信,用 "PING"命令长时间通信,看通信状态,如无发现丢包现象,说明通信正常,电口正常。

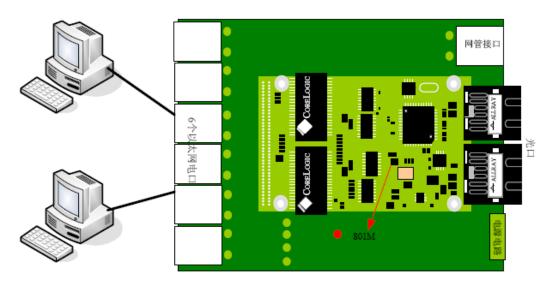



图 4-2 电口与 PC 连接图

测试中, 电口指示灯正确指示如下:



速率指示灯 (LEDSPEED): 10M 为不亮 100M 为常亮

链路指示灯(LEDACT):接口链接正确时 LED 常亮;当进行数据通信时,指示灯与数据收发同步闪烁。

模块上的LED 情况: LEDCPURUN 闪烁, LEDFULL1、LEDFULL2 常亮, 不进行数据通信时, LEDLINK1、LEDLINK2 常亮, 进行数据通信时, LEDLINK1、LEDLINK2 与数据收发同步闪烁。

注:由于转发类型采用的是 MAC 地址存储转发,在没有重新上电的情况下进行电口检测,电口换接时会出现短时间的通信失败(最长时间不超过 20 分钟),属于正常现象。

#### 4.3 光口检测

确定电口为正常的情况下,任选两电口连接 PC,把两设备的其中一个光口连接上(交叉连: IN→OUT,OUT→IN),如图 4-3 所示。用"PING"命令进行检测,经过多次长时间通信,收发数据包,丢包率为 0%,证明所连接的光口是正常的。用同样的方法测试剩下的光口。

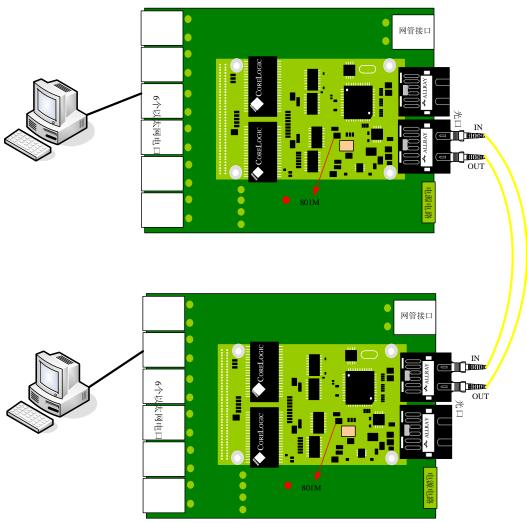



图 4-3 光口测试连接图



## 附录 A 常用接口

#### A-1 RJ45

RJ45 端口的引脚分布如图 A-1 定义,连接采用非屏蔽双绞线(UTP)或屏蔽双绞线(STP),连接距离不超过 100m。 100Mbps 连接采用 100  $\Omega$  的 5 类线,而 10Mbps 连接采用 的是 100  $\Omega$  的 3、4、5 类线。

RJ45 端口支持自动 MDI/MDI-X 操作,可以使用直通线连接 PC 或服务器,连接其它交换机或集线器。在直通线 (MDI) 中,管脚 1、2、3、6 对应连接;对于交换机或集线器的 MDI-X 端口,采用的是交叉线:  $1\rightarrow 3$ 、 $2\rightarrow 6$ 、 $3\rightarrow 1$ 、 $6\rightarrow 2$ 。

表 A-1 为 10Base-T/100Base-TX 使用 RJ45 的 MDI/MDI-X 的引脚定义说明。

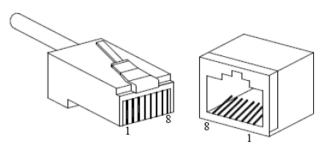



图 A-1 RJ45 端口 male (左) 和 female (右) 结构引脚图

| ₹ A-1 10Das | e-1/100base- | 14 引网化义见明 |
|-------------|--------------|-----------|
| 引脚号         | MDI 信号       | MDI-X 信号  |
| 1           | TD+          | RD+       |
| 2           | TD-          | RD-       |
| 3           | RD+          | TD+       |
| 6           | RD-          | TD-       |
| 4, 5, 7, 8  | _            | _         |

表 A-1 10Base-T/100Base-TX 引脚定义说明

注: "TD±"为发送数据±, "RD±"为接收数据±, "—"为未用。

#### A-2 DB9

PC 常用到的串行口串行接口 DB9(Female 和 Male)串口外形与引脚定义如图 A-2 和表 A-2 所示。

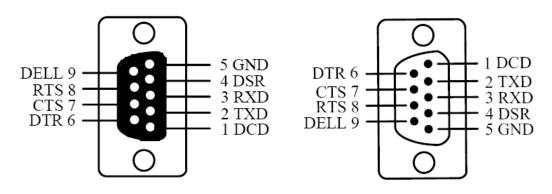



图 A-2 DB9 端口 Female (左) 和 Male (右) 结构引脚图



| 引脚号      | 功能说明与缩写      | 引脚号    | 功能说明与缩写      |
|----------|--------------|--------|--------------|
| (Female) |              | (Male) |              |
| 1        | 数据载波检测 (DCD) | 1      | 数据载波检测 (DCD) |
| 2        | 发送数据(TXD)    | 2      | 接收数据(RXD)    |
| 3        | 接收数据(RXD)    | 3      | 发送数据(TXD)    |
| 4        | 数据设备准备好(DSR) | 4      | 数据终端准备(DTR)  |
| 5        | 信号地(GND)     | 5      | 信号地(GND)     |
| 6        | 数据终端准备(DTR)  | 6      | 数据设备准备好(DSR) |
| 7        | 清除发送 (CTS)   | 7      | 请求发送(RTS)    |
| 8        | 请求发送(RTS)    | 8      | 清除发送 (CTS)   |
| 9        | 振铃指示 (DELL)  | 9      | 振铃指示(DELL)   |

表 A-2 DB9 端口 Female 和 Male 的引脚定义说明

## A-3 常用光纤接头类型

常用的光口类型: ST/FC/SC, 三种类型的外表结构和对应的光纤接头如图 A-3 所示, 光口的引脚定义如图 A-4 所示。

ST 型: 金属圆型卡口式结构;

FC型: 金属双重配合螺旋终止型结构;

SC 型: 矩形塑料插拔式结构, 特点是容易拆装。

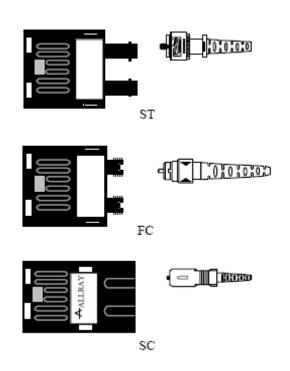



图 A-3 ST/FC/SC 光口与对应的光纤接头图



|          | TD 8 O                                                                    |
|----------|---------------------------------------------------------------------------|
| Top view | NC 7 0<br>VCCT 6 0<br>VCCR 5 0<br>SD 4 0<br>NRD 3 0<br>RD 2 0<br>GNDR 1 0 |

图 A-4 光口的引脚定义图



# 附录 B 术语解析

## 表 B-1 术语解析表

| 10BaseT   | 10Mbps 3、4 或 5 类非屏蔽双绞线(UTP)以太网标准                     |
|-----------|------------------------------------------------------|
| 100BaseTX | 100Mbps 5 类非屏蔽双绞线(UTP)以太网标准                          |
| 100BaseFX | 100Mbps 光纤以太网标准                                      |
| MDI/MDI-X | MDI: 介质相关接口(Medium Dependent Interface),一个以太网端口作为    |
|           | 接收端连接到另外设备的端口                                        |
|           | MDI-X:介质相关交叉接口(Medium Dependent Interface Cross-over |
| VLAN      | VLAN(Virtual Local Area Network)又称虚拟局域网,是指在交换局域网     |
|           | 的基础上,采用网络管理软件配置构建的可跨越不同网段、不同网络的端                     |
|           | 到端的逻辑网络,符合 802.1Q 标准。一个 VLAN 组成一个逻辑子网,即              |
|           | 一个逻辑广播域,它可以覆盖多个网络设备,允许处于不同地理位置的网                     |
|           | 络用户加入到一个逻辑子网中。使用 VLAN 具有控制广播风暴、提高网络                  |
|           | 整体安全性、网络管理简单直观等优点                                    |
| 广播、广播域、   | 广播:一个数据包被发送到网络上所有设备                                  |
| 广播风暴、广    | 广播域(broadcast domain): 采用广播地址可达到的设备的集合               |
| 播地址       | 广播风暴: 由网桥环造成的在网桥上无休止地转发广播帧或组播帧的情况                    |
|           | 广播地址(broadcast address): 一种地址,表明一个帧将被发送到网络中          |
|           | 的所有设备                                                |
| MAC 地址    | MAC(Media Access Control,介质访问控制)地址是识别 LAN(局域网)       |
|           | 节点的标识。它存储的是传输数据时真正赖以标识发出数据的电脑和接收                     |
|           | 数据的主机的地址。                                            |
| 全双工/半双工   | 全双工(full duplex):设备可以同时发送和接收的传输模式                    |
|           | 半双工(half duplex):一种传输模式,其中设备必须交替进行发送和接收              |
| 带宽        | Bandwidth: 一个媒体可以传输的最高和最低频率间的差值,也就是信道能               |
|           | 够传送的信息容量,例如Fast Ethernet的带宽为100Mbps                  |
| 自适应       | 对速度、双工和流控端口所具有的一种自动配置到适宜模式下的一种特征                     |