嵌入式 TCP/IP 协议单片机技术在网络通信中的应用

摘要:介绍了嵌入式 TCP/IP 协议单片机在网络通信中的数据传输技术。将 TCP/IP 协议嵌入 式单片机中,借助网卡芯片 CS8900+网络变压器 YL18-1080S 实现了单片机在局域网内和通 过局域网在因特网上的数据传输。用户终端以单片机系统板为媒介,通过网络与远程数据终 端实现数据通信。

关键词: TCP/IP 协议 单片机 因特网 局域网 网卡芯片

网络变压器 YL18-1080S

在因特网上,TCP/IP 协议每时每刻保证了数据的准确传输。在数据采集领域,如何利用 TCP/IP 协议在网络中进行数据传输成为一个炙手可热的话题。在本系统中,笔者利用 TCP/IP 协议中的 UDP(用户数据报协议)、IP(网络报文协议)、ARP(地址解析协议)及简单的 应用层协议成功地实现了单片机的网络互连,既提高了数据传输的速度,又保证了数据传输的正确性,同时也扩展了数据传输的有效半径。

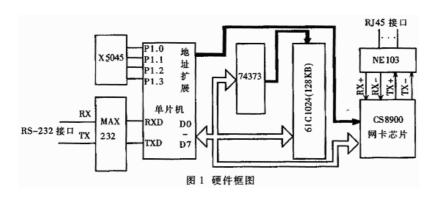
1 TCP/IP 协议简介

TCP/IP 协议是一套把因特网上的各种系统互连起来的协议组,保证因特网上数据的准确快速传输。参考开放系统互连(OSI)模型,TCP/IP 通常采用一种简化的四层模型,分别为:应用层、传输层、网络层、链路层。

(1) 应用层

网络应用层要有一个定义清晰的会话过程,如通常所说的 Http、Ftp、Telnet 等。在本系统中,单片机系统传递来自 Ethernet 和数据终端的数据,应用层只对大的数据报作打包拆报处理。

(2) 传输层


传输层让网络程序通过明确定义的通道及某些特性获取数据,如定义网络连接的端口号等, 实现该层协议的传输控制协议 TCP 和用户数据协议 UDP。在本系统中使用 UDP 数据报协议。

(3) 网络层

网络层让信息可以发送到相邻的 TCP/IP 网络上的任一主机上,IP 协议就是该层中传送数据的机制。同时建立网络间的互连,应提供 ARP 地址解析协议,实现从 IP 地址到数据链路物理地址的映像。

(4) 链路层

由控制同一物理网络上的不同机器间数据传送的底层协议组成,实现这一层协议的协议并属于 TCP/IP 协议组。在本系统中这部分功能由单片机控制网卡芯片 CS8900+网络变压器 YL18-1080S 实现。

2 硬件框图

如图 1 所示,系统提供 RJ45 接口连接 Ethernet 网络,并且提供一个串口给用户使用。系统 板可以将从 Ethernet 上过来的 IP 数据报解包后送给串口,也可将从串口过来的数据封装为 IP 包送到局域网中。外部 RAM 使用 61C1024(128KB),从而为数据处理提供了很大的缓存;使用 E2PROM——X25045,既可以作为看门狗使用,也可以将 IP 地址、网卡物理地址和其他 参数保存在里面。

CS8900 芯片是 Cirrus Logic 公司生产的一种局域网处理芯片,它的封装是 100-pin TQFP,内部集成了在片 RAM、10BASE-T 收发滤波器,并且提供 8 位和 16 位两种接口,本文只介绍它的 8 位模式。NE103 是一种脉冲变压器,可以用裕泰电子有限公司生产的 YL18-1080S,它是 10M 的网络变压器,,在 CS8900 的前端对网络信号进行脉冲波形变换。

3 工作原理

3.1 CS8900 的工作原理

CS8900 与单片机按照 8 位方式连接,网卡芯片复位后默认工作方式为 I/0 连接,基址是 30 0H,下面对它的几个主要工作寄存器进行介绍(寄存器后括号内的数字为寄存器地址相对基址 300H的偏移量)。

• LINECTL (0112H)

LINECTL 决定 CS8900 的基本配置和物理接口。在本系统中,设置初始值为 00d3H, 选择物理接口为 10BASE-T, 并使能设备的发送和接收控制位。

• RXCTL (0104H)

RXCTL 控制 CS8900 接收特定数据报。设置 RXTCL 的初始值为 0d05H,接收网络上的广播或者目标地址同本地物理地址相同的正确数据报。

• RXCFG (0102H)

RXCFG 控制 CS8900 接收到特定数据报后会引发接收中断。RXCFG 可设置为 0103H, 这样当收到一个正确的数据报后, CS8900 会产生一个接收中断。

• BUSCT (0116H)

BUSCT 可控制芯片的 I/0 接口的一些操作。设置初始值为 8017H, 打开 CS8900 的中断总控制 位。

• ISQ (0120H)

ISQ 是网卡芯片的中断状态寄存器,内部映射接收中断状态寄存器和发送中断状态寄存器的内容。

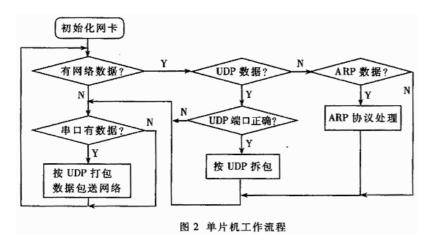
• PORTO (0000H)

发送和接收数据时, CPU 通过 PORTO 传递数据。

• TXCMD (0004H)

发送控制寄存器,如果写入数据 00COH,那么网卡芯片在全部数据写入后开始发送数据。

• TXLENG (0006H)


发送数据长度寄存器,发送数据时,首先写入发送数据长度,然后将数据通过PORTO写入芯片。

以上为几个最主要的工作寄存器(为 16 位),CS8900 支持 8 位模式,当读或写 16 位数据时,低位字节对应偶地址,高位字节对应奇地址。例如,向 TXCMD 中写入 00C0H,则可将 0 0h 写入 305H,将 C0H 写入 304H。

系统工作时,应首先对网卡芯片进行初始化,即写寄存器 LINECTL、RXCTL、RCCFG、BUSCT。 发数据时,写控制寄存器 TXCMD,并将发送数据长度写入 TXLENG,然后将数据依次写入 POR TO 口,如将第一个字节写入 300H,第二个字节写入 301H,第三个字节写入 300H,依此类推。 网卡芯片将数据组织为链路层类型并添加填充位和 CRC 校验送到网络同样,单片机查询 ISO 的数据,当有数据来到后,读取接收到的数据帧。读数据时,单片机依次读地址 300H,301H···。

3.2 单片机工作流程

如图人所示,单片机首先初始化网络设备。网卡 IP 地址和物理地址存在 X25045 中,单片机复位后首先读取这些数据以初始化网络。

单片机主要完成数据的解包打包。当有数据从 RJ45 过来,单片机对数据报进行分析,

如果是 ARP (物理地址解析)数据包,则程序转入 ARP 处理程序(因为在网络上正是 ARP 协议将 IP 地址和物理地址相映射)。如果是 IP 数据包且传输层使用 UDR 协议,端口正确,则认为数据报正确,数据解包后,将数据部分通过串口输出。反之,如果单片机从串口收到数据,则将数据按照 UDP 协议格式打包,送入 CS8900,由 CS8900 将数据输出到局域网中。

可以知道,单片机主要处理协议的网络层和传输层,链路层部分由 CS8900 完成。因单片机 将数据接收后完整不变地通过串口输出,所以将应用层交付用户来处理,用户可以根据需求 对收到的数据进行处理。

在单片机的程序处理中,包含了完整的 APR 地址解析协议。通过在单片机中正确设置网关、 子网掩码等参数,实现了通过局域网单片机与外部因特网上的终端设备的数据通信。

4 应用

这种嵌入式 TCP/IP 协议的单片机系统板,具有成本低、硬件少、占用面积少、传输速度快、使用方便等优点。适用于现有的网络传输系统,有着广泛的应用前景,特别是数据采集、数据传输领域。目前,在屏幕板数据成像、远程数据采集系统中被使用