第一款面向高端嵌入式开发应用MCU长期以来,常见的掌上电脑(PDA)等小型手持式设备上,由于硬件条件的限制,我们看到的显示器件通常是单色LCD,用户界面也非常简单,几乎看不到PC机上美观整齐的图形界面(GUI)支持。因为早期嵌入式处理器的速度有限,在处理图形和多媒体数据方面显得力不从心。
关键词: 嵌入式处理器 嵌入式系统 arm9 arm处理器 LCD
随着高性能嵌入式处理器的普及和硬件成本的不断降低,尤其是ARM系列处理器的推出,嵌入式系统的功能也越来越强。在多媒体应用的推动下,彩色LCD也越来越多地应用到了嵌入式系统中,如新一代掌上电脑(PDA)多采用TFT显示器件,支持彩色图形界面,图片显示和视频媒体播放。掌上电脑(PDA)的操作系统有微软Window CE,PalmOS等。而Linux做为开放源代码的操作系统也在市场中占据了一席之地。由于Linux成本低廉,任何人都可以得到其源代码并在其基础上进行开发,成为各家厂商极力发展的操作系统,加上其核心小,潜力可观。
在应用需求的推动下,Linux下也出现了许多图形界面软件包,如MiniGUI、Trolletech公司的Embedded QT等,其图形界面及开发工具与Windows CE不相上下。在图形软件包的开发和移植工作中都牵涉到底层LCD的驱动问题。笔者参与了一个很有代表性的项目,是基于ARM9的PDA系统的开发,用的是Motorola公司龙珠系列的MC9328MX1。软件采用Linux 2.4.18平台,编译器为gcc的ARM交叉编译器。在移植QT的过程中牵涉到了底层驱动的开发,本文就对相关问题作一探讨。
硬件平台
MC9328MX1(以下简称MX1)是Motorola公司基于ARM核心的第一款MCU,主要面向高端嵌入式应用。内部采用ARM920T内核,并集成了SDRAM/Flash,LCD,USB,蓝牙,多媒体闪存卡(MMC/SD, Memory Stick),CMOS摄像头等控制器。
LCD控制器的功能是产生显示驱动信号,驱动LCD显示器。用户只需要通过读写一系列的寄存器,完成配制和显示控制。MX1中的LCD控制器可支持单色/彩色LCD显示器。支持彩色TFT时,可提供4/8/12/16位颜色模式,其中16位颜色模式下可以显示64k种颜色。配置LCD控制器重要的一步是指定显示缓冲区,显示的内容就是从缓冲区中读出的,其大小由屏幕分辨率和显示颜色数决定。在本例中,笔者采用的是夏普LQ035Q2DD54 TFT 显示模块,在240×320分辨率下可提供16位彩色显示。
Linux下的设备驱动
Linux将设备分为最基本的两大类,字符设备和块设备。字符设备是以单个字节为单位进行顺序读写操作,通常不使用缓冲技术,如鼠标等,驱动程序实现比较简单;而块设备则是以固定大小的数据块进行存储和读写的,如硬盘,软盘等。为提高效率,系统对于块设备的读写提供了缓存机制,由于涉及缓冲区管理,调度,同步等问题,实现起来比字符设备复杂得多。
Linux的设备管理是和文件系统解密结合的,各种设备都以文件的形式存放在/dev目录下,称为设备文件。应用程序可以打开,关闭,读写这些设备文件,完成对设备的操作,就象操作普通的数据文件一样。为了管理这些设备,系统为设备编了号,每个设备号又分为主设备号和次设备号。主设备号用来区分不同种类的设备,而次设备号用来区分同一类型的多个设备。对于常用设备,Linux有约定俗成的编号,如硬盘主设备号是3。
Unix / Linux的特点之一,是为所有的文件,包括设备文件,提供了统一的操作函数接口,定义如下:
struct file_operations {
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char *, size_t, loff_t *);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, struct dentry *, int datasync);
int (*fasync) (int, struct file *, int);
int (*lock) (struct file *, int, struct file_lock *);
ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *);
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
};
结构体中的成员为一系列的接口函数,如用于读/写的read/ write函数,用于控制的ioctl等。打开一个文件就是调用这个文件file_operations中的open操作。不同类型的文件有不同的file_operations成员函数。如普通的磁盘数据文件,接口函数完成磁盘数据块读写操作;而对于各种设备文件,则最终调用各自驱动程序中的I/O函数进行具体设备的操作。这样,应用程序根本不用考虑操作的是设备还是普通文件,可一律当作文件处理,具有非常清晰统一的I/O接口。所以file_operations是文件层次的I/O接口。
Linux的帧缓冲设备
帧缓冲(framebuffer)是Linux为显示设备提供的一个接口,把显存抽象后的一种设备,他允许上层应用程序在图形模式下直接对显示缓冲区进行读写操作。这种操作是抽象的,统一的。用户不必关心物理显存的位置、换页机制等等具体细节。这些都是由Framebuffer设备驱动来完成的。帧缓冲驱动的应用广泛,在Linux的桌面系统中,Xwindow服务器就是利用帧缓冲进行窗口的绘制。尤其是通过帧缓冲可显示汉字点阵,成为Linux汉化的唯一可行方案。
结语
由于篇幅所限,本文中仅对帧缓冲设备驱动的基本原理和框架做了简单介绍。幸运的是,在Linux的发布版本中,包含了大量的设备驱动程序源代码,其中drvers/video下提供了多种显示卡的帧缓冲设备驱动程序程序,用户自己的驱动程序可参考成熟的代码编写或直接修改得到。
更多详情、、、技术支持:0755-83346949和0755-83679983