

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 1

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

W90P710 Programming Guide

Revision 2.1

01/06/2006

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 2

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Revision History
Revision Date Comment
1.0 08/30/2005 Initial Version for W90P710
2.0 Major Revision
2.1 01/06/2006 Modify some contents and re-order the

sections

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 3

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Table of Contents

1 Overview.. 15

1.1 Features ... 18
1.1.1 Architecture ... 18
1.1.2 External Bus Interface ... 18
1.1.3 Instruction and Data Cache ... 18
1.1.4 Ethernet MAC Controller.. 18
1.1.5 DMA Controller .. 19
1.1.6 USB Host Controller .. 19
1.1.7 USB Device Controller... 19
1.1.8 SDIO Host Controller ... 19
1.1.9 LCD Controller... 20
1.1.10 2 Channel AC97/I2S Audio Codec Host Interface ... 21
1.1.11 UART... 21
1.1.12 Timers.. 21
1.1.13 Advanced Interrupt Controller.. 21
1.1.14 GPIO ... 22
1.1.15 Real Time Clock .. 22
1.1.16 Smart Card Host Interface... 22
1.1.17 I2C Master ... 23
1.1.18 Universal Serial Interface (USI) ... 23
1.1.19 4-Channel PWM .. 23
1.1.20 Keypad Interface ... 24
1.1.21 PS2 Host Interface Controller .. 24
1.1.22 Power Management .. 24

2 EBI (External Bus Interface) .. 25
2.1 Overview... 25
2.2 Block Diagram .. 26

2.2.1 SDRAM interface... 26
2.3 Registers .. 27
2.4 Functional Descriptions .. 27

2.4.1 EBI Control Register (EBICON)... 27

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 4

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

2.4.2 ROM/Flash control register.. 28
2.4.3 SDRAM configuration registers ... 29
2.4.4 External I/O control registers ... 30
2.4.5 A system memory initialization example flow chart.. 30
2.4.6 REMAPPING... 32

3 Cache Controller .. 35
3.1 Overview... 35
3.2 Block Diagram .. 36
3.3 Registers .. 38
3.4 Functional Descriptions .. 38

3.4.1 On-Chip RAM .. 38
3.4.2 Non-Cacheable Area ... 39
3.4.3 Cache Flushing.. 39
3.4.4 Cache Enable and Disable .. 39
3.4.5 Cache Load and Lock.. 40
3.4.6 Cache Unlock .. 41

4 EMC (Ethernet MAC Controller) .. 42
4.1 Overview... 42
4.2 Block Diagram .. 43
4.3 Registers .. 44

4.3.1 EMC Control registers .. 44
4.3.2 EMC Status Registers ... 45

4.4 Functional Descriptions .. 45
4.4.1 Initialize Rx Buffer Descriptors... 45
4.4.2 Initialize Tx Buffer Descriptors ... 48
4.4.3 MII ... 50
4.4.4 Control Frames.. 52
4.4.5 Packet Processing... 52

5 GDMA.. 58
5.1 Overview... 58
5.2 Block Diagram .. 59
5.3 Registers .. 60
5.4 Functional Descriptions .. 60

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 5

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

5.4.1 GDMA Configuration ... 60
5.4.2 Transfer Count... 62
5.4.3 Transfer Termination ... 63
5.4.4 GDMA operation started by software... 63
5.4.5 GDMA operation started by nXDREQ ... 65
5.4.6 Fixed Address.. 66
5.4.7 Block Mode Transfer ... 66
5.4.8 Single Mode Transfer .. 66
5.4.9 Demand Mode Transfer... 66

6 USB Host Controller... 68
6.1 Overview... 68
6.2 Registers Map... 69
6.3 Block Diagram .. 70
6.4 Data Structures... 71

6.4.1 Endpoint Descriptor (ED) Lists .. 72
6.4.2 Transfer Descriptor.. 73
6.4.3 Host Controller Communication Area .. 75

6.5 Programming Note.. 76
6.5.1 Initialization.. 76
6.5.2 USB States .. 77
6.5.3 Add/Remove Endpoint Descriptors.. 78
6.5.4 Add/Remove Transfer Descriptors .. 80
6.5.5 IRP Processing.. 82
6.5.6 Interrupt Processing .. 84
6.5.7 Done Queue Processing.. 88
6.5.8 Root Hub ... 90

7 USB Device Controller ... 94
7.1 Overview... 94
7.2 Block Diagram .. 95
7.3 Register Map .. 95
7.4 Functional descriptions ... 97

7.4.1 Initialization.. 97
7.4.2 Endpoint Configuration .. 98

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 6

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

7.4.3 Interrupt Service Routine ... 98
7.4.4 Endpoint 0 Operation... 99
7.4.5 Get Descriptor ... 100
7.4.6 Endpoint A ~ C Operation.. 101
7.4.7 Example... 102

8 SDIO Host Controller ... 103
8.1 Overview... 103
8.2 Block Diagram .. 103
8.3 Registers .. 104
8.4 SDIO Host Controller .. 105

8.4.1 SDIO host controller Initialization Sequence.. 105
8.4.2 Move data from SDRAM to SDIO host controller buffer .. 106
8.4.3 Move data from SDIO host controller buffer to SDRAM .. 106

8.5 SD Host Interface ... 106
8.5.1 Send Command to SD/MMC Card .. 106
8.5.2 Get Response from SD/MMC Card ... 107
8.5.3 SD/MMC to Buffer Access ... 107
8.5.4 Buffer to SD/MMC Access ... 107

9 LCD Controller ... 108
9.1.1 Overview.. 108
9.1.2 Programming Procedure.. 112

9.2 Initialization... 115
9.3 Configure LCD Controller ... 115
9.4 Configure LCD Interrupt.. 117
9.5 Configure LCD Timing Generation.. 117
9.6 Configure OSD function.. 117
9.7 Configure TFT Palette Look-up Table... 119
9.8 Configure Gray level dithered data duty pattern ... 120
9.9 Configure Video/ OSD scaling factor .. 120
9.10 Configure the starting address and the stride of frame buffer and FIFO............................. 121
9.11 Configure how to show image on the panel .. 124
9.12 Enable FIFO ... 125
9.13 Enable LCD Controller.. 126

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 7

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

9.14 Check running state and process interrupt status... 126
10 Audio Controller.. 128

10.1 Overview... 128
10.2 Block Diagram .. 129
10.3 Registers .. 130
10.4 AC97 Interface.. 130

10.4.1 Cold Reset External AC97 Codec ... 132
10.4.2 Read AC97 Registers.. 132
10.4.3 Write AC97 Registers .. 134
10.4.4 AC97 Playback .. 135
10.4.5 AC97 Record ... 137

10.5 I2S Interface ... 138
10.5.1 I2S Play ... 138
10.5.2 I2S Record... 140

11 UART ... 142
11.1 Overview... 142
11.2 Registers .. 142
11.3 Functional Descriptions .. 144

11.3.1 Baud Rate.. 144
11.3.2 Initializations .. 145
11.3.3 Polled I/O Functions .. 147
11.3.4 Interrupted I/O Functions ... 148
11.3.5 IrDA SIR .. 153

12 Timers .. 154
12.1 Overview... 154
12.2 Block Diagram .. 155
12.3 Registers .. 155
12.4 Functional Descriptions .. 156

12.4.1 Interrupt Frequency ... 156
12.4.2 Initialization.. 156
12.4.3 Timer Interrupt Service Routine... 159
12.4.4 Watchdog Timer .. 160

13 AIC (Advanced Interrupt Controller) ... 163

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 8

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

13.1 Overview... 163
13.2 Block Diagram .. 164
13.3 Registers .. 165
13.4 Functional Descriptions .. 167

13.4.1 Interrupt channel configuration .. 167
13.4.2 Interrupt Masking... 167
13.4.3 Interrupt Clearing and Setting.. 168
13.4.4 Software Priority Scheme .. 168
13.4.5 Hardware Priority Scheme... 171

14 General-Purpose Input/Output (GPIO) ... 174
14.1 Overview... 174
14.2 Register Map .. 176
14.3 Functional Description .. 177

14.3.1 Multiple Functin Setting ... 177
14.3.2 GPIO Output Mode.. 178
14.3.3 GPIO Input Mode... 179

15 Real Time Clock (RTC) .. 181
15.1 Overview... 181
15.2 Block Diagram .. 182
15.3 Register Map .. 182
15.4 Functional Description .. 183

15.4.1 Initialization.. 183
15.4.2 RTC Read/Write Enable .. 183
15.4.3 Frequency Compensation.. 183
15.4.4 Application Note .. 184

15.5 Programming Note.. 185
15.5.2 Set Calendar and Time Alarm ... 187
15.5.3 Set tick interrupt... 189

16 Smart Card Host Interface.. 191
16.1 Overview... 191
16.2 Registers .. 191
16.3 Functional Description .. 193

16.3.1 Initialization Sequence... 193

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 9

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

16.3.2 Timers Usage .. 194
16.3.3 Receiver FIFO Data Time-out.. 196
16.3.4 Parity Error management... 197

17 I2C Synchronous Serial Interface Controller ... 199
17.1 Overview... 199
17.2 Block Diagram .. 201
17.3 Register Map .. 201
17.4 Functional Description .. 202

17.4.1 Prescale Frequency... 202
17.4.2 Start and Stop Signal... 202
17.4.3 Slave Address Transfer ... 202
17.4.4 Data Transfer... 203
17.4.5 Below list Some Examples of I2C Data Transaction.. 203

18 Universal Serial Interface ... 209
18.1 Overview... 209
18.2 Block Diagram .. 210
18.3 Register Map .. 210
18.4 Functional Description .. 211

18.4.1 Active Universal Serial Interface.. 211
18.4.2 Initialize Universal Serial Interface... 211
18.4.3 Universal Serial Interface Transmit/Receive.. 212

19 Pulse Width Modulation (PWM) Timer ... 213
19.1 Overview... 213
19.2 Block Diagram .. 215
19.3 Register Map .. 215
19.4 Functional Description .. 216

19.4.1 Prescaler and clock selector.. 216
19.4.2 Basic PWM timer operation and double buffering reload automatically....................... 217
19.4.3 PWM Timer Start Procedure.. 218
19.4.4 PWM Timer Stop Procedure.. 220

20 Keypad Interface .. 222
20.1 Overview... 222
20.2 Block Diagram .. 223

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 10

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

20.3 Register Map .. 223
20.4 Functional Description .. 223

20.4.1 KPI Interface Programming Flow... 224
20.4.2 KPI Low Power Mode Configuration.. 225

21 PS/2 Host Interface Controller.. 227
21.1 Overview... 227
21.2 Scan Code Set.. 227
21.3 Register Map .. 229
21.4 Functional Description .. 229

21.4.1 Initialization.. 229
21.4.2 Send Commands... 230
21.4.3 Read scan code and ASCII code... 231
21.4.4 Interrupt Service Routine ... 232
21.4.5 Example... 235

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 11

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Table of Figures

Figure 1-1 W90P710 Functional Block Diagram .. 16
Figure 2-1 SDRAM Interface... 26
Figure 2-2 System Memory Map Setting Flow .. 30
Figure 3-1 Instruction Cache Organization Block Diagram ... 36
Figure 3-2 Data Cache Organization Block Diagram .. 37
Figure 3-3 Cache Load and Lock.. 40
Figure 4-1 EMC Block Diagram .. 43
Figure 4-2 Rx Descriptor Initialization ... 47
Figure 4-3 Tx Descriptor Initialization.. 49
Figure 4-4 Packet Transmission Flow... 53
Figure 4-5 Tx Interrupt Service Routine Flow.. 55
Figure 4-6 Rx Interrupt Service Routine.. 57
Figure 5-1 GDMA Block Diagram.. 59
Figure 5-2 The bit-fields of the GDMA control register. ... 61
Figure 5-3 GDMA operations .. 62
Figure 5-4 Software GDMA Transfer... 64
Figure 6-1 Endpoint Descriptor Format ... 72
Figure 6-2 General Transfer Descriptor Format .. 74
Figure 6-3 Isochronous Transfer Descriptor Format ... 74
Figure 6-4 Remove an Endpoint Descriptor .. 79
Figure 6-5 ED list and TD queue... 80
Figure 7-1 USBD Controller Block Diagram.. 95
Figure 10-2 USBD Controller Block Diagram.. 99
Figure 8-1 SDIO Host Block Diagram ... 103
Figure 9-1 LCD Controller Block Diagram... 108
Figure 9-2 Overall programming flow for LCD controller - 1.. 112
Figure 9-3 Overall programming flow for LCD controller - 2.. 114
Figure 9-4 The relationship between screen, valid window, and OSD window 117
Figure 9-5 An example to explain how to program the starting address and stride........................... 122
Figure 10-1 Block diagram of Audio Controlle... 129
Figure 10-2 AC97 Playback Data in DMA Buffer .. 135

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 12

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Figure 10-3 AC97 Data in Record DMA buffer.. 137
Figure 10-4 I2S Play Data in DMA buffer .. 139
Figure 10-5 I2S Record Data in DMA buffer ... 140
Figure 11-1 UART initialization ... 145
Figure 11-2 Transmit data in polling mode.. 147
Figure 11-3 Receive data in polling mode... 148
Figure 11-4 Output function in interrupt mode... 149
Figure 11-5 Input functions in interrupt mode.. 150
Figure 11-6 Interrupt Service Routine ... 152
Figure 11-7 IrDA Tx/Rx ... 153
Figure 12-1 Timer Block Diagram ... 155
Figure 12-2 Timer Initialization Sequence... 158
Figure 12-3 Timer Interrupt Service Routine ... 159
Figure 12-4 Enable Watchdog Timer .. 161
Figure 12-5 Watchdog Timer ISR ... 162
Figure 13-1 AIC block diagram ... 164
Figure 13-2 Source Control Register .. 167
Figure 13-3 Sequential Priority Scheme.. 170
Figure 13-4 Interrupt Service Routine with Vector .. 172
Figure 13-5 Using hardware priority scheme .. 173
Figure 15-1 RTC Block Diagram ... 182
Figure 15-2 RTC Set Calendar and Time flow chart ... 186
Figure 15-3 RTC Set Calendar and Time Alarm flow chart ... 188
Figure 15-4 RTC Set tick interrupt flow chart .. 189
Figure 17-1 I2C Block Diagram ... 201
Figure 18-1 Universal Serial InterfaceI Block Diagra .. 210
Figure 19-1 PWM Block Diagram.. 215
Figure 19-2 PWM operation .. 218
Figure 19-3 PWM Timer Start Procedure.. 219
Figure 19-4 PWM Timer Stop flow chart (method 1)... 220
Figure 19-5 PWM Timer Stop flow chart (method 2)... 221
Figure 20-1 Keypad Controller Block Diagram.. 223
Figure 20-2 KPI Interface flowchart... 225

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 13

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Figure 20-3 KPI set Wake-Up in system low power mode flowchart... 226
Figure 21-1 Key map of PS/2 keyboard .. 227
Figure 21-2 Key map of extended keyboard & Numeric keypad ... 228
Figure 21-3 Make Code and Break Code.. 229
Figure 21-4 Example ISR.. 233

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 14

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

List of Tables

Table 3-1 The size and start address of On-Chip RAM .. 38
Table 6-1 HCCA (Host Controller Communication Area) .. 75
Table 9-1 LCD Controller Register Map.. 110
Table 9-2 Register LCDCON Bit Map ... 115
Table 9-3 OSD Display Condition ... 118
Table 9-4 entry of the TFT Look-up table.. 119
Table 9-5 STN 16-leve gray number & relative Time-based dithering .. 120
Table 9-6 BSWP=0, HSWP=0 .. 125
Table 9-7 BSWP=0, HSWP=1 .. 125
Table 9-8 BSWP=0, HSWP=0 .. 125
Table 9-9 BSWP=1, HSWP=0 .. 126
Table 10-1 AC97 Output Frame.. 131
Table 10-2 AC97 Output Frame Data Format ... 131
Table 10-3 AC97 Input Frame... 131
Table 10-4 AC97 Input Frame Data Format.. 132
Table 11-1 General Baud Rate Settings ... 145
Table 12-1 Timer Reference Setting Values ... 156
Table 13-1 AIC Register Definition.. 165
Table 14-1 GPIO Multiplexed Functions Table ... 174
Table 21-1 Command register PS2CMD... 230
Table 21-2 Command table... 230
Table 21-3 Register PS2SCANCODE .. 231
Table 21-4 Register PS2ASCII ... 232
Table 21-5 Register PS2ST .. 232
Table 21-6 LED Status byte .. 235

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 15

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

1 Overview

The W90P710 16/32-bit RISC micro-controller is a cost-effective, high-performance micro-controller
solution for Ethernet-based system. An integrated Ethernet controller, the W90P710, is designed for
use in managed communication hubs and routers.

The W90P710 is built around an outstanding CPU core: on the 16/32 ARM7TDMI based RISC
processor designed by Advanced RISC Machines, Ltd. The ARM7TDMI core is a low power, general-
purpose integrated circuits. Its simple, elegant, and fully static design is particularly suitable for cost-
sensitive and power-sensitive applications.

The W90P710 offers a 4K-byte I-cache/SRAM, a 4K-byte D-cache/SRAM and one MACs of
Ethernet controller that reduces total system cost. A color LCD controller is built in to support black-and-
white/gray-level/color TFT and low cost STN LCD modules. Most of the on-chip function blocks have
been designed using an HDL synthesizer and the W90P710 has been fully verified in Winbond’s state-
of-the art ASIC test environment.

The other important peripheral functions include one USB host controller, one USB device
controller, one AC97/IIS codec controller, one SD/SDIO host controller, one 2-Channel GDMA, two
smartcard host controller, four independent UARTS, one Watchdog timer, two 24-bit timers with 8-bit
pre-scale, 71 programmable I/O ports, PS/2 keyboard controller and an advance interrupt controller.
The external bus interface (EBI) controller provides for SDRAM, ROM/SRAM, flash memory and I/O
devices. The System Manager includes an internal 32-bit system bus arbiter and a PLL clock controller.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 16

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Figure 1-1 W90P710 Functional Block Diagram

On the following chapters, programming note of each chapter will be described in detailed.

• Chapter 2. External Bus Interface Controller
• Chapter 3. Cache Controller
• Chapter 4. Ethernet MAC Controller
• Chapter 5. GDMA
• Chapter 6. USB Host Controller
• Chapter 7. USB Device Controller

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 17

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

• Chapter 8. SDIO Host Controller
• Chapter 9. LCD Controller
• Chapter 10. Audio Controller
• Chapter 11. UART
• Chapter 12. Timers
• Chapter 13. Advance Interrupt Controller
• Chapter 14. GPIO
• Chapter 15. Real Time Clock
• Chapter 16. Smartcard Host Interface Controller
• Chapter 17. I2C Synchronous Serial Interface
• Chapter 18. Universal Serial Interface
• Chapter 19. PWM-Tmer
• Chapter 20. Keypad Interface
• Chapter 21. PS/2 Host Interface Controller

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 18

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

1.1 Features

1.1.1 Architecture

• Integrated system for POS (Point of Sale) and automatic data collection applications
• Fully 16/32-bit RISC architecture
• Little/Big-Endian mode supported
• Efficient and powerful ARM7TDMI core
• Cost-effective JTAG-based debug solution

1.1.2 External Bus Interface

• 8/16/32-bit external bus support for ROM/SRAM, flash memory, SDRAM and external I/Os
• Support for SDRAM
• Programmable access cycle (0-7 wait cycle)
• Four-word depth write buffer
• Cost-effective memory-to-peripheral DMA interface

1.1.3 Instruction and Data Cache

• Two-way, Set-associative, 4K-byte I-cache and 4K-byte D-cache
• Support for LRU (Least Recently Used) Protocol
• Cache is configurable as an internal SRAM
• Support Cache Lock function

1.1.4 Ethernet MAC Controller

• DMA engine with burst mode
• MAC Tx/Rx buffers (256 bytes Tx, 256 bytes Rx)
• Data alignment logic
• Endian translation
• 100/10-Mbit per second operation
• Full compliance with IEEE standard 802.3
• RMII interface only
• Station Management Signaling

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 19

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

• On-Chip CAM (up to 16 destination addresses)
• Full-duplex mode with PAUSE feature
• Long/short packet modes
• PAD generation

1.1.5 DMA Controller

• 2-channel General DMA for memory-to-memory data transfers without CPU intervention
• Initialed by a software or external DMA request
• Increments or decrements a source or destination address in 8-bit, 16-bit or 32-bit data transfers
• 4-data burst mode

1.1.6 USB Host Controller

• USB 1.1 compliant
• Compatible with Open HCI 1.0 specification
• Supports low-speed and full speed devices
• Build-in DMA for real time data transfer
• Two on-chip USB transceivers with one optionally shared with USB Device Controller

1.1.7 USB Device Controller

• USB 1.1 compliant
• Support four USB pipes including one control pipe and 3 configurable pipes for rich USB

functions
• Support USB Mass Storage
• Support USB Virtual COM port with modem capability
• Support Full speed only

1.1.8 SDIO Host Controller

• Directly connect to Secure Digital (SD, MMC or SDIO) flash memory card
• Supports DMA function to accelerate the data transfer between the internal buffer,

external SDRAM, and flash memory card

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 20

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

• Two 512 bytes internal buffers are embedded inside of the controller
• No SPI mode

1.1.9 LCD Controller

• STN LCD Display
 Supports Sync-type STN LCD
 Supports 2 types of LCD panels: 4-bit single scan and 8-bit single scan display type
 Supports 16 gray levels for Monochrome STN LCD panel
 Supports 4096(12bpp) color for Color STN LCD panel
 Virtual coloring method: Frame Rate Control (16-level)
 Anti-flickering method: Time-based Dithering

• TFT LCD Display
 Supports Sync-type TFT LCD and Sync-type High-color TFT LCD
 Supports 8-bpp(RGB 332) palette color display
 Supports 16-bpp(RGB 565) non-palette true color display

• TV Encoder
 Supports 8-bit YCbCr data output format to connect with external TV Encoder

• LCD Preprocessing
 Image re-size
 Horizontal/Vertical Down-Scaling
 Horizontal/Vertical Up-Scaling
 Image relocation
 Horizontal /Vertical Cropping
 Virtual Display

• LCD Postprocessing
 Support for one OSD overlay
 Support various OSD function

• Others
 Color-look up table size 256x32 bit for TFT used
 Dedicated DMA for block transfer mode

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 21

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

1.1.10 2 Channel AC97/I2S Audio Codec Host Interface

• AHB master port and an AHB slave port are offered in audio controller
• Always 8-beat incrementing burst
• Always bus lock when 8-beat incrementing burst
• When reach middle and end address of destination address, a DMA_IRQ is

requested to CPU automatically

1.1.11 UART

• Four UART (serial I/O) blocks with interrupt-based operation
• Support for 5-bit, 6-bit, 7-bit or 8-bit serial data transmit and receive
• Programmable baud rates
• 1, ½ or 2 stop bits
• Odd or even parity
• Break generation and detection
• Parity, overrun and framing error detection
• X16 clock mode
• Support for Bluetooth, IrDA and Micro-printer control

1.1.12 Timers

• Two programmable 24-bit timers with 8-bit pre-scalar
• One programmable 24-bit Watch-Dog timer
• One-short mode, period mode or toggle mode operation

1.1.13 Advanced Interrupt Controller

• 31 interrupt sources, including 4 external interrupt sources
• Programmable normal or fast interrupt mode (IRQ, FIQ)
• Programmable as either edge-triggered or level-sensitive for 4 external interrupt sources
• Programmable as either low-active or high-active for 4 external interrupt sources
• Priority methodology is encoded to allow for interrupt daisy-chaining
• Automatically mask out the lower priority interrupt during interrupt nesting
• Automatically clear the interrupt flag when the interrupt source is programmed to be edge-

triggered

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 22

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

1.1.14 GPIO

• 71 programmable I/O ports
• Pins individually configurable to input, output, or I/O mode for dedicated signals
• I/O ports Configurable for Multiple functions

1.1.15 Real Time Clock

• Time counter (second, minute, hour) and calendar counter (day, month, year)
• Alarm register (second, minute, hour, day, month, year)
• 12 or 24-hour mode selectable
• Recognize leap year automatically
• Day of the week counter
• Frequency compensate register (FCR)
• Beside FCR, all clock and alarm data expressed in BCD code
• Support tick time interrupt

1.1.16 Smart Card Host Interface

• ISO-7816 compliant
• PC/SC T=0, T=1 compliant
• 16-byte transmitter FIFO and 16-byte receiver FIFO

• FIFO threshold interrupt to optimize system performance
• Programmable transmission clock frequency

• Versatile baud rate configuration

• UART-like register file structure
• Versatile 8-bit, 16-bit, 24-bit time-out counter for Ansswer To Reset (ATR) and

waiting times processing
• Parity error counter in reception mode and in transmission mode with automatic

re-transmission
• Automatic activation and deactivation sequence through an independence

sequencer

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 23

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

1.1.17 I2C Master

• Compatible with Philips I2C standard, support master mode only
• Support multi master operation
• Clock stretching and wait state generation
• Provide multi-byte transmit operation, up to 4 bytes can be transmitted in a single transfer
• Software programmable acknowledge bit
• Arbitration lost interrupt, with automatic transfer cancellation
• Start/Stop/Repeated Start/Acknowledge generation
• Start/Stop/Repeated Start detection
• Bus busy detection
• Supports 7 bit addressing mode
• Software mode I2C

1.1.18 Universal Serial Interface (USI)

• Support USI master mode only
• Full duplex synchronous serial data transfer
• Variable length of transfer word up to 32 bits
• Programmable data frame size from 4 to 16 bits
• Provide burst mode operation, transmit/receive can be executed up to four times in one transfer
• MSB or LSB first data transfer
• Rx and Tx on both rising or falling edge of serial clock independently
• 2 slave/device select lines

1.1.19 4-Channel PWM

• Four 16-bit timers
• Two 8-bit pre-scalars & Two 4-bit divider
• Programmable duty control of output waveform (PWM)
• Auto reload mode or one-shot pulse mode
• Dead zone generator

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 24

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

1.1.20 Keypad Interface

• Scan up to 16x8 with an external 4 to 16 decoder and 4x8 array without auxiliary component
• Programmable debounce time
• One or two keys scan with interrupt and three keys reset function.
• Support low power mode wakeup function

1.1.21 PS2 Host Interface Controller

• APB slave consisted of PS2 protocol.
• Connect IBM keyboard or bar-code reader through PS2 interface.
• Provide hardware scan code to ASCII translation

1.1.22 Power Management

• Programmable clock enables for individual peripheral
• IDLE mode to halt ARM Core and keep peripheral working
• Power-Down mode to stop all clocks included external crystal oscillator.
• Exit IDLE/Power-Down by interrupts
•

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 25

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

2 EBI (External Bus Interface)

2.1 Overview

W90P710 supports External Bus Interface (EBI), which controls the access to the external memory
(ROM/FLASH, SDRAM) and External I/O devices. The EBI has seven chip selects to select one
ROM/FLASH bank, two SDRAM banks, and four External I/O banks and 25-bit address bus. It supports
8-bit, 16-bit, and 32-bit external data bus width for each bank.

The EBI has the following functions :
 SDRAM controller
 EBI control register
 ROM/FLASH interface
 External I/O interface

The base addresses of SDRAM, ROM/FLASH, and External I/O are all programmable. Thus they
can be set in a specified address ranges in memory. The EBI also offer power-on setting to ensure
the system can be boot by from ROM/FLASH.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 26

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

2.2 Block Diagram

2.2.1 SDRAM interface

Figure 2-1 SDRAM Interface

MCLK

MCKE

nSCS[1:0]

nSRAS

nSCAS

nSWE

nSDQM[3:0]

A[21:0]

D[31:0]

A[10:0]

DQ[[31:0]

DQM[3:0]

nWE

nCAS

nRAS

nCS

BS0

BS1

CLK

CKE

W90P710

A13

A14

A[10:0]

nSCS0

SDRAM
64Mb 512Kx4x32

nSDQM[3:0]

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 27

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

2.3 Registers

Register Address R/W Description Reset Value
EBICON 0xFFF0.1000 R/W EBI control register 0x0001.0000
ROMCON 0xFFF0.1004 R/W ROM/FLASH control register 0x0000.0XFC
SDCONF0 0xFFF0.1008 R/W SDRAM bank 0 configuration register 0x0000.0800
SDCONF1 0xFFF0.100C R/W SDRAM bank 1 configuration register 0x0000.0800
SDTIME0 0xFFF0.1010 R/W SDRAM bank 0 timing control register 0x0000.0000
SDTIME1 0xFFF0.1014 R/W SDRAM bank 1 timing control register 0x0000.0000
EXT0CON 0xFFF0.1018 R/W External I/O 0 control register 0x0000.0000
EXT1CON 0xFFF0.101C R/W External I/O 1 control register 0x0000.0000
EXT2CON 0xFFF0.1020 R/W External I/O 2 control register 0x0000.0000
EXT3CON 0xFFF0.1024 R/W External I/O 3 control register 0x0000.0000
CKSKEW 0xFFF0.1F00 R/W Clock skew control register (for testing) 0xXXXX.0038

2.4 Functional Descriptions

2.4.1 EBI Control Register (EBICON)

The major function of EBICON is to control the SDRAM refreshing timing. This register can
control is used to set the refresh period, clock, and valid time of nWAIT signal. Additionally, the EBI
memory format configuration (Big, or Little Endian) can be known got by reading from the EBI control
register. The auto-refresh rate is controlled by the REFRAT , and SDRAM clock is controlled by
CLKEN.

There are two SDRAM refresh mode, auto-refresh mode and self-refresh mode. If SDRAM is
operated in auto-refresh mode, SDRAM controller refreshes SDRAM every by a period specified by
REFRAT. If SDRAM is in self-refresh mode, it is refreshed by SDRAM itself. Thus if SDRAM is
operated in self-refresh mode, the CLKEN and REFEN can be disabled to reduce save power
consumption. Another way to save reduce power consumption is just to disabling CLKEN, and

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 28

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

SDRAM controller still refreshed SDRAM by every each specified refresh period. In this case, SDRAM
is closed not functioning by disabling CLKEN to save for power saving, and but SDRAM controller still
refreshes it to prevent from data lost. In sum, SDRAM is operated as follows :

 NORMAL MODE :
 REFEN=1
 REFMOD=0
 CLKEN=1
 REFRAT=(proper period)
 POWER SAVING MODE 1 :
 REFEN=1
 REFMOD=0
 CLKEN=1
 REFRAT=(proper period)
 POWER SAVING MODE 2 :
 REFEN=0
 REFMOD=1
 CLKEN=0
 REFRAT=(don’t care)

2.4.2 ROM/Flash control register

ROM/Flash control register is used to control the configuration of the boot ROM. In this register, the
size, base address, access type and access timing are specified. The base address of the boot ROM
can be set by BASADDR. Although the width of BASADDR is only 13 bits, the real start address of the
boot ROM is calculated as BASADDR << 18. Thus the range of the start address of the boot ROM is
from 0x0 to (2^13-1)*2^18. However, the system memory map should be concerned together when
setting the base address the base address setting should be checked to prevent from using
RESERVED memory address. The system memory map can be found in W90P710 spec data sheet.

After system reset, the EBI controller has uses the special power-on setting to ensure the boot
ROM to be bootable. These setting are as follows:

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 29

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

• The EBI controller is select to the boot ROM was selected by EBI controller after reset.
• The reset value of BASADDR of ROM/Flash control register is 0.
• The default size of the boot ROM is 256Kb256KB.
• The default value of tACC is the longest value. This value is supposed to suit support any kind of

ROM/Flash.
• The boot ROM/Flash data bus width is determined by the data bus signals D [13: 12] in power-

on setting. The external hardware has the responsibility to weak needs to do the pull-up, or pull-
down setting on the D [13: 12] according to the boot ROM/Flash types.

• PGMODE is set in normal ROM mode.

By the configurations shown above, the instruction fetch can be sure to be performed can be
fetched from the start of the boot ROM. However, if the boot ROM/Flash has more others functions, ex:
such as PGMODE, or more with larger size, the software has the responsibility to correct the setting
boot up program should configure the of ROM/Flash control register to let it work correctly after boot.

The ROM/Flash interface is designed for the boot ROM and it is supposed only to before read
operations. However, if a flash is attached to the ROM/Flash interface, it still can be written by the
writing programming command provided by of the flash. The ROM/Flash interface doesn’t hold the
writing command to the ROM/Flash. Thus the boot ROM/Flash is still programmable if the boot
ROM/Flash allows to be written. Thus, the attached Flash can be updated also by the programming
interface/sequence provided by the Flash.

2.4.3 SDRAM configuration registers

The SDRAM configuration registers enable software to set a number of operating parameters for
the SDRAM controller. There are two configuration registers SDCONF0, SDCONF1 for SDRAM bank 0,
bank 1 respectively. Each bank can have been set to different configurations. W90P710 also offers the
flexible timing control registers to control the generation and processing of the control signal and can
suit to control the timing of different speed type of SDRAMs. These timing control registers are
SDTIME0 and SDTIME1 for SDRAM bank 0, bank 1 respectively each.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 30

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

The configurations of SDCONF and SDTIME are dependent on the SDRAM types attached to the
EBI interface. Thus the software should have the information about the SDRAM attached to the EBI
interface before set the SDCONF and SDTIME according to the timing of SDRAM types. The SDRAM
components supported by W90P710 can be found in W90P710 spec data sheet.

The base address of SDRAM bank 0 and bank 1 are also programmable. By BASADDR of
SDCONF, the SDRAM bank can be place in a specific address location. BASADDR is 13 bits, and the
base address is calculated as BASADDR << 18. Thus the range of the base address each SDRAM
bank is from 0x0 to (2^13-1)*2^18. Whenever setting the SDCONF register, the MRSET bit should be
set. If this bit doesn’t set when setting SDCONF, the SDRAM controller won’t issue a mode register set
command to SDRAM and the setting will be invalid. The SDRAM controller offers auto pre-charge mode
of SDRAM for SDRAM bank0/1. If this mode is enabled, the SDRAM will issue a pre-charge command
to SDRAM when for each access.

2.4.4 External I/O control registers

The W90P710 supports an external device control without glue logic. It is very cost effective
because provides address decoding and control signals timing logic are not needed. The control
registers can control special external I/O devices for providing the low cost external devices control
solution. For instance, if there is a SRAM is attached to the external I/O bank 0. Then the SRAM can be
access as memory after setting the external I/O control register of external I/O bank 0. By the way, the
flash ROM also can be attached to the external I/O. There are four external I/O banks relative to four
control registers called EXT0CON, EXT1CON, EXT2CON, and EXT3CON. The base address of each
external I/O bank can be set by BASADDR of external I/O control register. BASADDR is 13 bits and the
base address is calculated as BASADDR << 18.

2.4.5 A system memory initialization example flow chart

Figure 2-2 System Memory Map Setting Flow

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 31

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Reset Go

Does the system have
been initialized?

Calculating the correct instruction fetch address
after remapping boot FLASH/ROM base address

Set the EBICON, ROMCON, SDCONF0,
SDCONF1, SDTIME0, and SDTIME1 at the same

time by store multiple instruction.

Branch to the correct instruction fetch address
calculated before.

Example:
EBICON = 0x000509C1
ROMCON = 0xFFA00724 (base=0x7FD00000 size=256KB)
SDCONF0 = 0x000010ED (base=0x00000000 size=32MB)
SDCONF0 = 0x040010ED (base=0x02000000 size=32MB)
SDTIME0 = 0x000007FF
SDTIME0 = 0x000007FF

Execute boot software

Calculating the correct instruction fetch address
after remapping boot FLASH/ROM base address

Boot FLASH/ROM 256KB 0x00000000
0x00040000

0x7FFFFFFF

SDRAM BANK 1

0x00000000

0x02000000
SDRAM BANK 0

Boot FLASH/ROM 256KB

0x04000000

0x7FFFFFFF

Before Initialization After Initialization

0x7FD000000

Figure 2-4 is the boot flow of Boot Monitor with remapping. The flow chart shows that most of the
EBI control registers, EBICON, ROMCON, SDCONF, SDTIME should beware initialized as soon as
possible immediately after reset. Each value of these control register must be known before these
registers were configured. Because on doing of remapping, the control registers should be set by store
multiple instructions (STMIA). The store multiple instructions guarantee to complete the memory
initialization before next instruction execution. The system memory maps before initialization and after
initialization are shown as above, too. After system reset, the system can access the 256KB boot
FLASH/ROM. After the system initialization the memory map becomes the After Initialization of Figure
2-4.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 32

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

2.4.6 REMAPPING

RAM is normally with faster access speed and wider than ROM. For this reason, it is better to store
for the vector table and interrupt handlers if the memory on system address at 0x0 is of RAM. However,
if RAM is located at address 0x0 on power-up, there is not a valid instruction in the reset vector (0x0)
entry. Therefore, you must allow ROM to be located at 0x0 during normal execution. The changeover
remapping from the reset to the normal memory map is normally caused by writing to a memory-
mapped register.

In W90P710 the memory remapping can be achieved by setting EBI control registers. The following
example is a MACRO, which achieves performs the remapping when booting. The program flow of this
example is as Figure 2-4.

In general, the memory remapping only needs to be preformed once at reset. Thus the reset value
of SDCONF0 is used to check if the system has been initialized. If the system memory needs to do
remapping, the correct instructions to be fetched after remapping is important are critical. Therefore, the
MACRO will calculate the correct instruction fetch address after remapping. It does this by using labels
and program counter to know get the current execution position and execution position decided at link-
time. If the current execution position is different to from execution position decided at link-time, the
MACRO will calculate the correct instruction fetch address after remapping according to their address
relation. Finally, the value of PC will be update immediately after remapping. Because the memory
bases can be controlled by registers, what we called remapping means setting the EBI control registers.
The configuration values are predefined as rEBICON, rROMCON, rSDCONF0, rSDCONF1, rSDTIME0,
rSDTIME1, and are stored to relative control registers by store multiple instruction (STMIA). The source
code is listed as follows:

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 33

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

; --
; UNMAPROM
; --------
; Provide code to deal with mapping the reset ROM away from zero

 MACRO
$label UNMAPROM $w1,$w2

; This macro needs to test if the system has already been initialized
; The reset value of SDCONF0 is used to check if the system has been initialized

 LDR $w1, =SDCONF0 ;SDCONF0=0xFFF01008
 LDR $w1, [$w1]
 LDR $w2, =0x800
 CMP $w1, $w2
 BNE %FT0

; Set mode to SVC, interrupts disabled (just paranoid)
 MRS $w1, cpsr
 BIC $w1, $w1, #0x1F
 ORR $w1, $w1, #0xD3
 MSR cpsr_fc, $w1

; Configure the EBI controller to remap the flash

; The EBI Control Registers must be set using store multiples
; Set up a stack in internal SRAM to preserve the original register contents

; Disable Cache and use the on-chip SRAM to be stack
 LDR $w1, =CAHCNF ; CAHCNF=0xFFF02000
 LDR $w2, =0x0 ; SetValue = 0x0
 STR $w2, [$w1] ; Cache,WB disable

; W90P710 _SRAM_BASE = 0x7FE00000
; W90P710 _SRAM_SIZe = 10 Kbytes

 MOV $w1, sp
 LDR sp, =(W90P710 _SRAM_BASE+W90P710 _SRAM_SIZE)

 STR $w1, [sp, #-4]! ; preserve previous sp on new stack
 STMFD sp!, {r0 - r12,lr}

; The labels “$label.temp” and “$label.EndSysMapJump are absolute addresses
; calculated by linker according to the RO base.

 LDR r2, =$label.temp
; The value of current pc is the run-time address of “$label.temp”
 MOV r1, pc
 LDR r3, =$label.EndSysMapJump

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 34

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

$label.temp
 MOV lr, #0
; If r2 > r1, the system needs to remapping.
; The RO_base is W90P710 _FLASH_BASE at link-time, thus we needs it to
; Calculate the correct instruction fetch address after remapping
 CMP r2, r1
 LDRGT lr, =W90P710 _FLASH_BASE

; Calculate the actual fetch address where is the location of
; the label “$label.EndSysMapJump” after remapping

 SUB r3, r3, r2
 ADD r1, r1, r3
 ADD lr, lr, r1

; Load in the target values into the control registers
 ADRL r0, $label.SystemInitData
 LDMIA r0, {r1-r6}
 LDR r0, =EBICON

; Now run critical jump code
 STMIA r0, {r1-r6}
 MOV pc, lr
$label.EndSysMapJump

; Now running from new PROM location, since code no longer exists in low memory
; Restore registers
 LDMFD sp!, {r0 - r12,lr}
 LDR $w1, [sp], #4
 MOV sp, $w1
 B %FT0

$label.SystemInitData
 DCD rEBICON ; REFEN=1,REFMOD=0,CLKEN=1,REFRAT=0x138,WAITVT=0

 DCD rROMCON ; base=W90P710 _FLASH_BASE,size=256KB,BTSIZE=32bit,

; tPA=8MCLK,tACC=8MCLK

 DCD rSDCONF0; base=0x0,size=32MB,MRSET=1,AUTOPR=1,LATENCY=3MCLK,

; LENGTH=1Byte,COMPBK=2bank,DBWD=32bit,COLUM=8bit

 DCD rSDCONF1; base=0x2000000,size=32MB,MRSET=1,AUTOPR=1,LATENCY=3MCLK,

; LENGTH=1Byte,COMPBK=2bank,DBWD=32bit,COLUM=8bit

 DCD rSDTIME0 ; tRCD=8MCLK,tRDL=4MCLK,tRP=8MCLK,tRAS=8MCLK
 DCD rSDTIME1 ; tRCD=8MCLK,tRDL=4MCLK,tRP=8MCLK,tRAS=8MCLK
 ALIGN
0
 MEND

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 35

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

3 Cache Controller

3.1 Overview

The W90P710 incorporates a 4KB Instruction cache, a 4KB Data cache, and 8 words write buffer
to improve the system performance. The caches consist of high-speed SRAM that provides quicker
access time than external memory. If cache is enabled, the CPU tries to fetch instructions from I-
cache instead of external memory. Similarly, the CPU tries to read data from D-cache instead of
external memory. But note that the CPU will write data into both D-cache and write buffer (write-
through mode). If I-Cache / D-Cache were disabled, these cache memories can be treated as On-
Chip SRAM.

To raise the cache-hit ratio, these two caches are configured as two-way set associative
addressing. Both I-cache and D-Cache organization is 256 sets, two lines per set. Each cache has four
words cache line size. When a miss occurs, four words must be fetched consecutively from external
memory. The replacement algorithm is a LRU (Least Recently Used).

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 36

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

3.2 Block Diagram
Figure 3-1 Instruction Cache Organization Block Diagram

xxWSINDEX(7)

0123410113031

Tag(20)

Non-cacheable
Control bit

L V Way1 Tag0

Way1 Tag1

Way1 Tag127

L V

L V

:
:

VL Way0 Tag0

Way0 Tag1

Way0 Tag127

VL

VL

:
:

Set0

Set1

Set127

:
:

20-bit 20-bit

Way1

4 words cache line

W3 W2 W1 W0

W3 W2 W1 W0

W3 W2 W1 W0

:
:

:
:

:
:

:
:

Way0

4 words cache line

W3 W2 W1 W0

W3 W2 W1 W0

W3 W2 W1 W0

:
:

:
:

:
:

:
:

Way Select

32-bit

32-bit 32-bit

Set0

Set1

Set127

:
:

Word select
 Bits

7-bit

7-bit

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 37

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Figure 3-2 Data Cache Organization Block Diagram

xxWSINDEX(7)

0123410113031

Tag(20)

Non-cacheable
Control bit

L V Way1 Tag0

Way1 Tag1

Way1 Tag127

L V

L V

:
:

VL Way0 Tag0

Way0 Tag1

Way0 Tag127

VL

VL

:
:

Set0

Set1

Set127

:
:

20-bit 20-bit

Way1

4 words cache line

W3 W2 W1 W0

W3 W2 W1 W0

W3 W2 W1 W0

:
:

:
:

:
:

:
:

Way0

4 words cache line

W3 W2 W1 W0

W3 W2 W1 W0

W3 W2 W1 W0

:
:

:
:

:
:

:
:

Way Select

32-bit

32-bit 32-bit

Set0

Set1

Set127

:
:

Word select
 Bits

7-bit

7-bit

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 38

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

3.3 Registers

R : read only, W : write only, R/W : both read and write, C : Only value 0 can be written

Register Address R/W Description Reset Value
CAHCNF 0xFFF0.2000 R/W Cache configuration register 0x0000.0000
CAHCON 0xFFF0.2004 R/W Cache control register 0x0000.0000
CAHADR 0xFFF0.2008 R/W Cache address register 0x0000.0000

3.4 Functional Descriptions

3.4.1 On-Chip RAM

If I-Cache or D-Cache is disabled, it can be used as On-Chip SRAM. The size of On-Chip RAM
depends on the I-Cache and D-Cache enable bits ICAEN, DCAEN in Cache Configuration Register
(CAHCNF). The details listed in Table 3-1.

Table 3-1 The size and start address of On-Chip RAM

ICAEN DCAEN On-Chip RAM
 Size Start Address

0 0 8KB 0x7FE0.0000
0 1 4KB 0x7FE0.0000
1 0 4KB 0x7FE0.1000
1 1 Unavailable

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 39

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

3.4.2 Non-Cacheable Area

The cache affects the first 2GB system memory. Sometimes it is necessary to define non-
cacheable areas when the consistency of data stored in memory and the cache can’t be ensured. To
support this feature, the W90P710 provides a non-cacheable area control bit in the address field, A
[31]. If A [31] in the ROM/FLASH, SDRAM, or external I/O bank’s access address is “0”, then the
accessed data is cacheable. If the A [31] value is “1”, the accessed data is non-cacheable.
Cache Control Register

The Cache controller supports one Control register (CAHCON) to control cache flushing,
lock/unlock and drain write buffer. All the command set bits of CAHCON register are auto-clear bit. At
the end of execution, the command set bit will be cleared to “0” automatically. The detail description of
each bit filed can be found in W90P710 specification.

3.4.3 Cache Flushing

To prevent unpredictable error, it’s better to flush cache before enable it. Both I-Cache and D-
Cache can be entirely flushed in one operation, or be flushed one line at a time. The bit FLHA and
FLHS of register CAHCON are used to flush entire cache and single line, respectively. Bit DCAH or
ICAH of register CAHCON is used to select D-Cache or I-Cache for the flush operation. The Cache
Address Register (CAHADR) must be set before flush a single cache line.

Due to W90P710 does not support external memory snooping; it is necessary to flush cache if the
force consistency of cache and memory is required. For example, The I-Cache should be flushed
after a self-modifying code is executed. Similarly, the D-Cache should be flushed before an external
device starts a DMA transfer with a cacheable memory region.

3.4.4 Cache Enable and Disable

After the cache was flushed, the cache can be enabled. Bit ICAEN and DCAEN of register CAHCNF
is used to enable D-Cache and I-Cache. The D-Cache and I-Cache can be enabled individually, or

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 40

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

enabled at the same time. The write buffer can be enabled by setting the WRBEN. Most of the time,
ICAEN, DCAEN and WRBEN are enabled at the same time.

3.4.5 Cache Load and Lock

The W90P710 cache controller supports a cache-locking feature that locks critical sections of
code or data into I-Cache or D-Cache. This guarantees the quick access to these critical sections.
Lockdown operation can be performed with a granularity of one cache line (4 words). The smallest
size, which can be locked down, is 4 words. After a line is locked, it operates as a regular instruction
SRAM. Locked lines don’t be replaced either cache misses or flush per line command. Figure 3-5
shows the steps for locking instructions or data.

Figure 3-3 Cache Load and Lock

Set CAHADR
Write the start address of the data
to be locked into CAHADR
register

Set CAHCON
1. Set LDLK.
2. Set ICAH for I-cache, DCAH
for D-cache

Increased the address
by 16

Desired data are all
locked ?

start

end

Yes

No

There are some limitations during the locking cache line into the I-Cache or D-Cache.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 41

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

 The code that executes load and lock operation should be held in a non-cacheable area of
memory.

 The cache should be enabled and interrupts should be disabled.

 Flushed the cache before execute load and lock to ensure that the data to be locked down is
not already in the cache.

3.4.6 Cache Unlock

The unlock operation is used to unlock previously locked cache lines. The cache controller

provides two unlock command, unlock line and unlock all.

The unlock line operation is performed on a cache line granularity. In case the line is found in the
cache, it is unlocked and starts to operate as a regular valid cache line. In case the line is not found in
the cache, no operation is done and the command terminates with no exception. To unlock one line,
write the address of the line to be unlocked into the CAHADR Register, and then set the ULKS and
ICAH bits in the CAHCON register for I-cache or set the ULKS and DCAH bits for D-cache.

The unlock all operation is performed on all cache lines of I-Cache or D-Cache. In case a line is
locked, it is unlocked and starts to operate as regular valid cache line. In case a line is not locked or if
it is invalid, no operation is performed. To unlock the whole instruction cache, set the ULKA and ICAH
bits. To unlock the whole data cache, set the ULKA and DCAH bits.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 42

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

4 EMC (Ethernet MAC Controller)

4.1 Overview

The W90P710 provides a Ethernet MAC Controller (EMC) for WAN/LAN application. This EMC
has its DMA controller, transmit FIFO, and receive FIFO.

The Ethernet MAC controller consists of IEEE 802.3/Ethernet protocol engine with internal CAM
function for Ethernet MAC address recognition, Transmit-FIFO, Receive-FIFO, TX/RX state machine
controller and status controller. The EMC only supports RMII (Reduced MII) interface to connect
with PHY operating on 50MHz REF_CLK.

Features :

• Supports IEEE Std. 802.3 CSMA/CD protocol.
• Supports both half and full duplex for 10M/100M bps operation.
• Supports RMII interface.
• Supports MII Management function.
• Supports pause and remote pause function for flow control.
• Supports long frame (more than 1518 bytes) and short frame (less than 64 bytes) reception.
• Supports 16 entries CAM function for Ethernet MAC address recognition.
• Supports internal loop back mode for diagnostic.
• Supports 256 bytes embedded transmit and receive FIFO.
• Supports DMA function.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 43

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

4.2 Block Diagram
Figure 4-1 EMC Block Diagram

AHB Bus Master AHB Bus
Slave

Register
Files

MII Management
State Machine

MDCMDIO

TxDMA
State Machine

RxDMA
State Machine

TxFIFORxFIFO TxFIFO
Control

CSMA/CD
(RxMAC, TxMAC)

RMII2MII

Arbiter

RxFIFO
Control

Flow Control

AHB Bus Interface

Station Management InterfaceRMII Interface

MAC
Address
Register

TX_CLK
Domain

HCLK
Domain

MDC
Domain

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 44

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

4.3 Registers

4.3.1 EMC Control registers

Register Address R/W Description Reset Value
CAMCMR 0xFFF0.3000 R/W CAM Command Register 0x0000.0000
CAMEN 0xFFF0.3004 R/W CAM Enable Register 0x0000.0000
CAM0M 0xFFF0.3008 R/W CAM0 Most Significant Word Register 0x0000.0000
CAM0L 0xFFF0.300C R/W CAM0 Least Significant Word Register 0x0000.0000
CAM1M 0xFFF0.3010 R/W CAM1 Most Significant Word Register 0x0000.0000
CAM1L 0xFFF0.3014 R/W CAM1 Least Significant Word Register 0x0000.0000
CAM2M 0xFFF0.3018 R/W CAM2 Most Significant Word Register 0x0000.0000
CAM2L 0xFFF0.301C R/W CAM2 Least Significant Word Register 0x0000.0000
CAM3M 0xFFF0.3020 R/W CAM3 Most Significant Word Register 0x0000.0000
CAM3L 0xFFF0.3024 R/W CAM3 Least Significant Word Register 0x0000.0000
CAM4M 0xFFF0.3028 R/W CAM4 Most Significant Word Register 0x0000.0000
CAM4L 0xFFF0.302C R/W CAM4 Least Significant Word Register 0x0000.0000
CAM5M 0xFFF0.3030 R/W CAM5 Most Significant Word Register 0x0000.0000
CAM5L 0xFFF0.3034 R/W CAM5 Least Significant Word Register 0x0000.0000
CAM6M 0xFFF0.3038 R/W CAM6 Most Significant Word Register 0x0000.0000
CAM6L 0xFFF0.303C R/W CAM6 Least Significant Word Register 0x0000.0000
CAM7M 0xFFF0.3040 R/W CAM7 Most Significant Word Register 0x0000.0000
CAM7L 0xFFF0.3044 R/W CAM7 Least Significant Word Register 0x0000.0000
CAM8M 0xFFF0.3048 R/W CAM8 Most Significant Word Register 0x0000.0000
CAM8L 0xFFF0.304C R/W CAM8 Least Significant Word Register 0x0000.0000
CAM9M 0xFFF0.3050 R/W CAM9 Most Significant Word Register 0x0000.0000
CAM9L 0xFFF0.3054 R/W CAM9 Least Significant Word Register 0x0000.0000
CAM10M 0xFFF0.3058 R/W CAM10 Most Significant Word Register 0x0000.0000
CAM10L 0xFFF0.305C R/W CAM10 Least Significant Word Register 0x0000.0000
CAM11M 0xFFF0.3060 R/W CAM11 Most Significant Word Register 0x0000.0000
CAM11L 0xFFF0.3064 R/W CAM11 Least Significant Word Register 0x0000.0000
CAM12M 0xFFF0.3068 R/W CAM12 Most Significant Word Register 0x0000.0000
CAM12L 0xFFF0.306C R/W CAM12 Least Significant Word Register 0x0000.0000
CAM13M 0xFFF0.3070 R/W CAM13 Most Significant Word Register 0x0000.0000
CAM13L 0xFFF0.3074 R/W CAM13 Least Significant Word Register 0x0000.0000
CAM14M 0xFFF0.3078 R/W CAM14 Most Significant Word Register 0x0000.0000
CAM14L 0xFFF0.307C R/W CAM14 Least Significant Word Register 0x0000.0000
CAM15M 0xFFF0.3080 R/W CAM15 Most Significant Word Register 0x0000.0000
CAM15L 0xFFF0.3084 R/W CAM15 Least Significant Word Register 0x0000.0000
TXDLSA 0xFFF0.3088 R/W Transmit Descriptor Link List Start Address

Register
0xFFFF.FFFC

RXDLSA 0xFFF0.308C R/W Receive Descriptor Link List Start Address
Register

0xFFFF.FFFC

MCMDR 0xFFF0.3090 R/W MAC Command Register 0x0000.0000

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 45

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

MIID 0xFFF0.3094 R/W MII Management Data Register 0x0000.0000
MIIDA 0xFFF0.3098 R/W MII Management Control and Address

Register
0x0090.0000

FFTCR 0xFFF0.309C R/W FIFO Threshold Control Register 0x0000.0101
TSDR 0xFFF0.30A0 W Transmit Start Demand Register Undefined
RSDR 0xFFF0.30A4 W Receive Start Demand Register Undefined
DMARFC 0xFFF0.30A8 R/W Maximum Receive Frame Control Register 0x0000.0800
MIEN 0xFFF0.30AC R/W MAC Interrupt Enable Register 0x0000.0000

4.3.2 EMC Status Registers

Register Address R/W Description Reset Value
MISTA 0xFFF0.30B0 R/W MAC Interrupt Status Register 0x0000.0000
MGSTA 0xFFF0.30B4 R/W MAC General Status Register 0x0000.0000
MPCNT 0xFFF0.30B8 R/W Missed Packet Count Register 0x0000.7FFF
MRPC 0xFFF0.30BC R MAC Receive Pause Count Register 0x0000.0000
MRPCC 0xFFF0.30C0 R MAC Receive Pause Current Count Register 0x0000.0000
MREPC 0xFFF0.30C4 R MAC Remote Pause Count Register 0x0000.0000
DMARFS 0xFFF0.30C8 R/W DMA Receive Frame Status Register 0x0000.0000
CTXDSA 0xFFF0.30CC R Current Transmit Descriptor Start Address

Register
0x0000.0000

CTXBSA 0xFFF0.30D0 R Current Transmit Buffer Start Address Register 0x0000.0000
CRXDSA 0xFFF0.30D4 R Current Receive Descriptor Start Address

Register
0x0000.0000

CRXBSA 0xFFF0.30D8 R Current Receive Buffer Start Address Register 0x0000.0000

4.4 Functional Descriptions

4.4.1 Initialize Rx Buffer Descriptors

(1) Allocate memory for Rx descriptors.
(2) Write start address of (1) to RXDLSA register and let Rx software pointer point to this

address.
(3) Set ownership bits of each descriptor to DMA.
(4) Allocate memory as data buffer and write the address to data buffer start address field of Rx

descriptor.
(5) Set start address of next descriptor, this field of the last descriptor should set to the address

of the first descriptor.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 46

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

(6) The start address of descriptor and data buffer are suggested to be aligned to 16 bytes
address boundary.

Figure 4-2 lists the Rx Descriptor initialization flow.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 47

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Figure 4-2 Rx Descriptor Initialization

Allocate memory (16 bytes boundary) for Rx
Buffer Descriptors

Write the start address of allocated Rx Buffer
Descriptors to RXDLSA, also initialized Rx

software pointer

Set ownership bits of each descriptor to DMA

Allocate memory for Rx data buffers(4-Bytes
boundary), and write the address of data buffer to
Data Buffer Start Address field of each Rx Buffer

Descriptor

Get the start address of next descriptor, set it to
Start Address of Next Descriptor field of current

descriptor until the last one, the last descriptor
should link to the first one to form a descriptor ring

Start

End

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 48

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

4.4.2 Initialize Tx Buffer Descriptors

(1) Allocate memory for Tx descriptors.
(2) Write start address of (1) to TXDLSA register and let Tx software pointer point to this

address.
(3) Set ownership bits of each descriptor to CPU.
(4) Allocate memory to save frame data and write the address to data buffer start address field of

Tx descriptor.
(5) Set start address of next descriptor, this field of the last descriptor should set to the address

of the first descriptor.
(6) Set I,C,P bits of each descriptor(The bits can also be set before transmitting packets).
(7) The start address of descriptor and data buffer are suggested to be 16 bytes alignment.

Figure 4-3 lists the Tx Descriptor initialization flow.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 49

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Figure 4-3 Tx Descriptor Initialization

Allocate memory (16 bytes boundary) for Tx
Buffer Descriptors

Write the start address of allocated Tx Buffer
Descriptors to TXDLSA, also initialized Tx

software pointer

Set ownership bits of each descriptor to CPU

Allocate memory for Tx data buffers(4-Bytes
boundary), and write the address of data buffer to
Data Buffer Start Address field of each Tx Buffer

Descriptor

Get the start address of next descriptor, set it to
Start Address of Next Descriptor field of current

descriptor until the last one, the last descriptor
should link to the first one to form a descriptor ring

Start

End

Set I, C, P bits of each descriptor(These bits also
can be set before transmit packets)

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 50

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

4.4.3 MII

4.4.3.1 MII Management Function Configure Sequence

Read Write
1. Set appropriate MDCCR.
2. Set PHYAD and PHYRAD.
3. Set Write to 1’b0
4. Set bit BUSY to 1’b1 to send a MII

management frame out.
5. Wait BUSY to become 1’b0.
6. Read data from MIID register.
7. Finish the read command.

1. Write data to MIID register
2. Set appropriate MDCCR.
3. Set PHYAD and PHYRAD.
4. Set Write to 1’b1
5. Set bit BUSY to 1’b1 to send a MII

management frame out.
6. Wait BUSY to become 1’b0.
7. Finish the write command.

4.4.3.2 PHY Registers Programming

Control Register(0x00).

Bit Function
15 Reset
14 Loopback
13 Speed (1=100MB, 0=10MB)
12 Auto-negotiation Enable
11 Power-Down
10 Isolate
09 Restart auto-negotiation
08 Duplex Mode (1=Full, 0=Half)
07 Collision test

Status Register #1(0x01)

Bit Function
15 100BASE-T4 capable
14 100BASE-TX full duplex capable
13 100BASE-TX half duplex capable
12 10BASE-T full duplex capable

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 51

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

11 10BASE-T half duplex capable
06 Accept management frames with

preamble suppressed
05 Auto-negotiation complete
04 Remote fault
03 Auto-negotiation capable
02 Link status(1=Up, 0=Down)
01 Jabber condition detected
00 Extended register capable

Auto-negotiation Advertisement Register(0x04)

Protocol selection (00001-IEEE802.3)
Bit Function
15 Next page available
13 Remote fault
10 Flow control support
09 100BASE-T4 support
08 100BASE-TX full duplex support
07 100BASE-TX half duplex support
06 10BASE-T full duplex support
05 10BASE-T half duplex support
04 ~ 00 Protocol selection (00001-IEEE802.3)

Status Register #2(0x11)

Current speed(10M/100M) and operation(full/half duplex) can read from this register, the
exact bit position should refer to the PHY datasheet.

Example for auto-negotiation

(1) Set “auto-negotiation enable” and “restart auto-negotiation”(bits 12 and 9) of control
register

(2) Wait auto-negotiation complete by reading “auto-negotiation complete”(bit 5) of status
register #1 until it is set

(3) Read status register #2 to get speed and operation mode that is the result of auto-
negotiation.

(4) Set speed and operation mode of MAC

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 52

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

4.4.4 Control Frames

4.4.4.1 Receive Control Pause Frame

1. sdklfn
2.
3. Set ACP bit in MCMDR
4. The Multicast address “01-80-c2-00-00-01” should fill to CAM if AMP not set
5. Set EnCFR in MIEN if want to handle control frame receive interrupt

4.4.4.2 Send Control Pause Frame
1. Fill the destination MAC address to CAM#13
2. Fill the source MAC address to CAM#14
3. Fill length/type(0x8808), opcode(0x0001) and operand(timeslot) to CAM#15
4. Set SDPZ bit in MCMDR
5. Wait control pause frame transmission complete by reading SDPZ bit until it is 0

4.4.5 Packet Processing

4.4.5.1 Packet Transmission

(1) Get Tx buffer descriptor from Tx software pointer.
(2) Check ownership of (1), do nothing if ownership is DMA.
(3) Allocate data buffer and set start address to data buffer starting address field of (1).
(4) Copy packet data to data buffer.
(5) Set I,C,P bits if need.
(6) Set packet length to frame length field of (1).
(7) Set ownership to DMA.
(8) Set TXON bit of MCMDR register if it is not set.
(9) Write TSDR register.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 53

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Figure 4-4 Packet Transmission Flow

Get a Tx Buffer Descriptor from Tx Software Buffer
Descriptor Pointer

Check ownership bits, CPU ? Run out of Descriptors,
Exception Handling

Allocate data buffer for storing transmitting packets, set
the start address of data buffer to Data Buffer Starting

Address field of buffer descriptor

Copy Transmitting packet data to allocated buffer

Set I, C, P bits if needed

Set length of the packet to Frame Length field of
descriptor

Set ownership bits to DMA

Set TXON bit of MCMDR register if it didn't be set

Write TSDR register

Ready to Transmit Packet

MAC Processing

N

Y

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 54

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

4.4.5.2 Tx Interrupt Service Routine
(1) Get and check status in MISTA.
(2) Set software reset bit in FIFOTHD and re-initialize MAC if bus error occur. Do the following

step if no error occur.
(3) Get status from the descriptor of Tx software pointer. Do the following steps if TXCP bit is set.
(4) Free data buffer allocated to this descriptor.
(5) Set the next descriptor to Tx software pointer.
(6) Transmit the next packet if there is packet available in device queue.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 55

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Figure 4-5 Tx Interrupt Service Routine Flow

Check status of MISTA

Bus Error ?
Set Software Reset

bit in FIFOTHD to
reset MAC

Get Status from Tx Buffer
Descriptor pointed by Tx S/W

pointer

TXCP bit set ?

Free data buffer allocated for
the transmitted packet

Update the Tx S/W descriptor
pointer to next Tx Buffer

Descriptor

Transmit the next packet if
there is any packet available in

the device queue

Error Handling for
other interrupt cause.

Enter Tx ISR

End of Tx ISR

N

Y

N

Y

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 56

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

4.4.5.3 Rx Interrupt Service Routine
(1) Get and check status in MISTA.
(2) Set software reset bit in FIFOTHD and re-initialize MAC if bus error occur. Do the following

step if no error occur.
(3) Get ownership from the descriptor of Rx software pointer. Do the following step if ownership is

CPU.
(4) Get status from the descriptor of Rx software pointer. Do the following steps if RXGD bit is set.
(5) Change ownership to DMA.
(6) Set the next descriptor to Rx software pointer.
(7) Re-start from step (3) if descriptor of Rx software pointer is not the same as the one of

CRXDSA register.
(8) Write RSDR register.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 57

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Figure 4-6 Rx Interrupt Service Routine

Check MISTA

Bus Error ?

RXGD ?

Copy the received data to buffer
provided by upper protocol layer

Change ownership bits to DMA

Update the Rx S/W descriptor pointer to next descriptor

Rx S/W Descriptor pointer the
same as CRXDSA

Write RSDR

CPU ?

Check the ownership bits on the Rx Buffer Descriptor pointer by S/W pointer.

Get Rx Status from the status field of Rx Buffer Descriptor.

Exit Rx ISR

Y

Y

Y

MAC Software Reset
by FIFOTHD

Run out of Rx Buffer Descriptor,
Exception Hadling

Error Handling for Receive Frame
Error

Y

N

NN

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 58

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

5 GDMA
5.1 Overview

The W90P710 GDMA controller provides a data transfer mechanism without the need of CPU
intervention. It can move data between two memory regions, or between memory and external
devices. The GDMA has two independent channels that support single and block mode transfer.
When GDMA is programmed to single mode, it requires a request (nXDREQ) for each data transfer
that may be one byte, one half-word or one word. When GDMA is programmed to block mode, a
single GDMA request will make all of the data to be transferred.

The data transfer can be started after write the control register or receive an external DMA
request (nXDREQ). The GDMA will try to finish the data transfer according to the transfer mode,
source address, destination address and transfer count. The device driver can recognize the
completion of a GDMA operation by polling control register or when it receives a GDMA interrupt.

The W90P710 GDMA controller implements many flexible features to support the data transfers.
It can increment or decrement source or destination address during the data transfer, and conduct
with 8-bit (byte), 16-bit (half-word), or 32-bit (word) size data transfers. The source or destination
address of the GDMA can be fixed also. Furthermore, the GDMA supports 4-data burst mode to boost
performance and supports demand mode to speed up external GDMA operations.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 59

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

5.2 Block Diagram

Figure 5-1 GDMA Block Diagram

GDMA Channel 0

nDREQ

nDACK

nXDACK

GDMA block

nXDREQ

AHB Bus Interface

GDMA Channel 1

nDACK

nDREQ

SWREQ 0 SWREQ 1

External
GDMA

Interface

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 60

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

5.3 Registers

R : read only, W : write only, R/W : both read and write, C : Only value 0 can be written

Register Address R/W Description Reset Value

GDMA_CTL0 0xFFF0.4000 R/W Channel 0 Control Register 0x0000.0000

GDMA_SRCB0 0xFFF0.4004 R/W Channel 0 Source Base Address Register 0x0000.0000

GDMA_DSTB0 0xFFF0.4008 R/W Channel 0 Destination Base Address Register 0x0000.0000

GDMA_TCNT0 0xFFF0.400C R/W Channel 0 Transfer Count Register 0x0000.0000

GDMA_CSRC0 0xFFF0.4010 R Channel 0 Current Source Address Register 0x0000.0000

GDMA_CDST0 0xFFF0.4014 R Channel 0 Current Destination Address Register 0x0000.0000

GDMA_CTCNT0 0xFFF0.4018 R Channel 0 Current Transfer Count Register 0x0000.0000

GDMA_CTL1 0xFFF0.4020 R/W Channel 1 Control Register 0x0000.0000

GDMA_SRCB1 0xFFF0.4024 R/W Channel 1 Source Base Address Register 0x0000.0000

GDMA_DSTB1 0xFFF0.4028 R/W Channel 1 Destination Base Address Register 0x0000.0000

GDMA_TCNT1 0xFFF0.402C R/W Channel 1 Transfer Count Register 0x0000.0000

GDMA_CSRC1 0xFFF0.4030 R Channel 1 Current Source Address Register 0x0000.0000

GDMA_CDST1 0xFFF0.4034 R Channel 1 Current Destination Address Register 0x0000.0000

GDMA_CTCNT1 0xFFF0.4038 R Channel 1 Current Transfer Count Register 0x0000.0000

5.4 Functional Descriptions

5.4.1 GDMA Configuration

Each GDMA channel has one control register, two base address registers and one transfer count
register. These registers should be correctly programmed before the data transfer starts. The most
important one is the control register (GDMA_CTL). It is used to control the transfer behavior of the
GDMA operation, such as the transfer mode, transfer count, transfer width and interrupt mask. Figure
5-2 lists the content of GDMA_CTL. The detail description of each bit-field can be found in W90P710
data sheet.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 61

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Figure 5-2 The bit-fields of the GDMA control register.

The source base address register (GDMA_SRCB) is used to set the base address of source data.
The destination base address register (GDMA_DSTB) is used to set the starting address where the
source data to be stored. The number of the GDMA transfer is set by programming the transfer count
register (GDMA_TCNT). The GDMA operation is continued until the transfer count register is counted
down to zero. Figure 5-3 shows the programming flow for GDMA operation.

31 30 29 28 27 26 25 24

RESERVED

23 22 21 20 19 18 17 16

RESERVED SABNDERR DABNDERR GDMAERR AUTOIEN TC BLOCK SOFTREQ

15 14 13 12 11 10 9 8

DM RESERVED TWS SBMS RESERVED BME SIEN

7 6 5 4 3 2 1 0

SAFIX DAFIX SADIR DADIR GDMAMS RESERVED GDMAEN

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 62

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Figure 5-3 GDMA operations

Start

Set destination address

Set transfer count

Set control register

Should be at the nature boundary of TWS

24-bit (maximum is 16M-1), each count represents:
i. 8 bits when 8-bit transfer.
ii. 16 bits when 16-bit transfer.
iii. 32 bits when 32-bit transfer.
iv. 8*4, 16*4, or 32*4 bits when burst mode enabled.

The mode, direction, fixing, bust,
bus lock, transfer width, block
mode, interrupt are set here.

Clear [TC]

Transfer complete ?

End

Clean control register

Set source address

If the SOFTREQ was not self-clean in the
previous GDMA transfer, it should be cleaned
before next GDMA transfer request.

Should be at the nature boundary of TWS

Yes

No

5.4.2 Transfer Count

The value in register GDMA_TCNT is the transfer count, not the byte count. Normally, the
number of final transferred bytes is calculated by the following equation.

Transferred bytes = [GDMA_TCNT] * Transfer width /* burst mode is disabled */

For example, supposes that [GDMA_TCNT] = 16 and the transfer width is half-word (16-bit). The
number of transferred bytes should be 16 * 2 = 32. But if the burst mode is enabled, the above
equation will be changed as below.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 63

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Transferred bytes = [GDMA_TCNT] * Transfer width * 4 /* burst mode is enabled */

In case of burst mode is enabled, the transferred bytes of the above example should be 16 * 2 * 4
= 128

5.4.3 Transfer Termination

When GDMA finishes the transfer, it will set the bit [TC] of register GDMA_CTRL and generate an
interrupt request if the interrupt is enabled. The device driver can either poll the bit [TC] or wait the
GDMA interrupt occurs to know the transfer is completed. Note that the device driver must clear bit
[TC] to clear this interrupt request to let the next GDMA operation to continue.

5.4.4 GDMA operation started by software

The GDMA can be configured as software mode to perform memory-to-memory transfer. In this
mode, the transfer operation starts as soon as the setting of the GDMA control registers are set, the
setting of source address, destination address, and transfer count should be programmed in
advanced. The programming method of software mode is listed below:

(1) Set the GDMA to software mode (GDMAMS=00b).
(2) Set the GDMA to Block Mode.
(3) After all configuration of the GDMA, set [SOFTREQ] = 1 and [GDMAEN] = 1 to start

the GDMA operation.
(4) Single mode is invalid.
(5) Demand mode is invalid.

In software mode, bit SOFTREQ and GDMAEN are self-cleared. The GDMA controller
automatically clears these 2 bits after transfer completed. However, GDMAEN won’t be self-clear if
AUTOIEN bit is set. Hence, the driver only needs to set bit SOFTREQ to start next data transfer. If the
GDMA didn’t complete this transfer, it will cause the GDMA transfer error bit to be set, and the

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 64

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

SOFTREQ won’t be self-cleared. In this case, the SOFTREQ bit should be cleared before next
software GDMA request.

It should be note that the source and destination base address must be in the right alignment
according to its transfer width. For example, if the transfer width is 32-bit, the source and destination
base address should be word-alignment. If each one is not aligned, the GDMA will read from and
write to wrong addresses and the alignment error flags, SABNDERR and DABNDERR, will be set.

Figure 5-4 shows an example code for software GDMA transfer.

Figure 5-4 Software GDMA Transfer

d e f i n e B A S E 0 x c 0 0 0 0 0 0 0
d e f i n e G D M A _ S R C B 0 (B A S E + 0 x F F 0 4 0 0 4)
d e f i n e G D M A _ D S T B 0 (B A S E + 0 x F F 0 4 0 0 8)
d e f i n e G D M A _ T C N T 0 (B A S E + 0 x F F 0 4 0 0 C)
d e f i n e G D M A _ C S R C 0 (B A S E + 0 x F F 0 4 0 1 0)
d e f i n e G D M A _ C D S T 0 (B A S E + 0 x F F 0 4 0 1 4)
d e f i n e G D M A _ C T C N T 0 (B A S E + 0 x F F 0 4 0 1 8)

v o i d m a i n (v o i d)
{

* ((v o l a t i l e U I N T *) G D M A _ C T L 0) = 0 x 0 ;
* ((v o l a t i l e U I N T *) G D M A _ S R C B 0) = 0 x c 2 0 0 0 0 0 0 ;
* ((v o l a t i l e U I N T *) G D M A _ D S T B 0) = 0 x c 2 0 0 1 0 0 0 ;
* ((v o l a t i l e U I N T *) G D M A _ T C N T 0) = 0 x 1 0 ;
* ((v o l a t i l e U I N T *) G D M A _ C T L 0) = 0 x 1 2 8 0 1 ;

w h i l e (! (* ((v o l a t i l e U I N T *) G D M A _ C T L 0) & 0 x 4 0 0 0 0))
;

}

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 65

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

In this example, source base address is set as 0xC2000000 and destination base address is
0xC2001000. The transfer count is 0x10. The burst mode is not turned on in this example.

Both source and destination base addresses are increment. The transfer width is 32-bit. The
program waits GDMA transfer completed by polling TC flag. The first line of main routine that clears
the GDMA control register is used to avoid that the SOFTREQ did not be self-cleared in the previous
GDMA transfer. Once these code executed, the GDMA will copy 0x10*4 bytes data from 0xC2000000
to 0xC2001000.

After the transfer completed, the current source, destination, and transfer count status can be
read from current status registers. These current status registers are GDMA_CSRC, GDMA_CDST,
and GDMA_CTNT respectively. However, if the AUTOIEN is 1, the current status registers will be
updated to the value stored in GDMA_SRCB, GDMA_DSTB, and GDMA_TCNT. The GDMAEN did
not be self-cleared if AUTOIEN is 1. Therefore, it only needs to set SOFTREQ to request the GDMA
transfer next time if the AUTOIEN is 1 by the same source address, destination address, and transfer
count.

5.4.5 GDMA operation started by nXDREQ

The GDMA can accept the request from external device. The external device requests the GDMA
transfer by asserting signal nXDREQ. When nXDREQ is used to request the GDMA transfer, it is
called external nXDREQ mode. The programming method of external nXDREQ mode is the same as
software mode except for the followings.

• The GDMA transfer is requested by nXDREQ pin.
• The GDMA is operated in external nXDREQ mode (GDMANS=01b).
• Single mode is valid.
• Demand mode is valid.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 66

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

5.4.6 Fixed Address

Generally the GDMA continually increase or decrease the source and destination address during
data transfer. The W90P710 GDMA controller provides another feature to support the fixed
source/destination address to perform data transfer between system memory and external device. To
do a Memory-to-I/O transfer, the bit DAFIX in register GDMA_CTL should be set. In case of I/O-to-
Memory transfer, the bit SAFIX in register GDMA_CTL should be set.

5.4.7 Block Mode Transfer

When GDMA is programmed to block mode ([SBMS] = 1), it needs only one request to transfer
all the data. When receiving nXDREQ request or the bit SOFTREQ is set, the GDMA begins to
transfer data. After the numbers of data specified on register GDMA_TCNT have been transferred,
the GDMA set the bit TC and generates an interrupt if it is enabled. Then the GDMA stops until next
request is received.

5.4.8 Single Mode Transfer

The single mode transfer ([SBMS] = 0) is different to block mode. It can’t be started via setting bit
SOFTREQ. Besides, Single Mode Transfer requires an nXDREQ request for each data transfer that
may be one byte, one-halftword, or one word. When receiving nXDREQ request, GDMA performs a
single data transfer and then wait for next nXDREQ. After the numbers of data specified by register
GDMA_TCNT have been transferred, the GDMA set the bit TC and generates an interrupt if it is
enabled.

5.4.9 Demand Mode Transfer

The GDMA controller supports the demand mode feature to speed up external DMA transfer.
When bit DM of register GDML_CTL is set to 1, GDMA controller transfers data as long as the signal
nXDREQ is active. The amount of data transferred depends on how long the nXDREQ is active.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 67

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

When nXDREQ is active and GDMA gets the bus in Demand mode, GDMA controller holds the
system bus until the nXDREQ signal becomes non-active. Therefore, the period of the active
nXDREQ signal should be carefully tuned such that the entire operation does not exceed an
acceptable interval (for example, in a DRAM refresh operation).

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 68

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

6 USB Host Controller

6.1 Overview

The Universal Serial Bus (USB) is a low-cost, low-to mid-speed peripheral interface standard
intended for modem, scanners, PDAs, keyboards, mice, and other devices that do not require a high-
bandwidth parallel interface. The USB is a 4-wire serial cable bus that supports serial data exchange
between a Host Controller and a network of peripheral devices. The attached peripherals share USB
bandwidth through a host-scheduled, token-based protocol. Peripherals may be attached, configured,
used, and detached, while the host and other peripherals continue operation (i.e. hot plug and unplug
is supported).

The W90P710 USB Host Controller has the following features :

• Open Host Controller Interface (OHCI) Revision 1.0 compatible.

• USB Revision 1.1 compatible

• Supports both low-speed (1.5 Mbps) and full-speed (12Mbps) USB devices.

• Handles all the USB 1.1 protocol.

• Built-in DMA for real-time data transfer

• Multiple low power modes for efficient power management

The Host Controller Driver has the following responsibilities :

• Host Controller Management

• Bandwidth Allocation

• List Management

• Root Hub Management

• Multiple low power modes for efficient power management

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 69

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

6.2 Registers Map

Register Address R/W Description Reset Value
OpenHCI Registers

HcRevision 0xFFF0.5000 R Host Controller Revision Register 0x0000.0010
HcControl 0xFFF0.5004 R/W Host Controller Control Register 0x0000.0000
HcCommandStatus 0xFFF0.5008 R/W Host Controller Command Status Register 0x0000.0000
HcInterruptStatus 0xFFF0.500C R/W Host Controller Interrupt Status Register 0x0000.0000
HcInterruptEnable 0xFFF0.5010 R/W Host Controller Interrupt Enable Register 0x0000.0000
HcInterruptDisable 0xFFF0.5014 R/W Host Controller Interrupt Disable Register 0x0000.0000
HcHCCA 0xFFF0.5018 R/W Host Controller Communication Area Register 0x0000.0000
HcPeriodCurrentED 0xFFF0.501C R/W Host Controller Period Current ED Register 0x0000.0000
HcControlHeadED 0xFFF0.5020 R/W Host Controller Control Head ED Register 0x0000.0000
HcControlCurrentED 0xFFF0.5024 R/W Host Controller Control Current ED Register 0x0000.0000
HcBulkHeadED 0xFFF0.5028 R/W Host Controller Bulk Head ED Register 0x0000.0000
HcBulkCurrentED 0xFFF0.502C R/W Host Controller Bulk Current ED Register 0x0000.0000
HcDoneHead 0xFFF0.5030 R/W Host Controller Done Head Register 0x0000.0000
HcFmInterval 0xFFF0.5034 R/W Host Controller Frame Interval Register 0x0000.2EDF
HcFrameRemaining 0xFFF0.5038 R Host Controller Frame Remaining Register 0x0000.0000
HcFmNumber 0xFFF0.503C R Host Controller Frame Number Register 0x0000.0000
HcPeriodicStart 0xFFF0.5040 R/W Host Controller Periodic Start Register 0x0000.0000
HcLSThreshold 0xFFF0.5044 R/W Host Controller Low Speed Threshold Register 0x0000.0628
HcRhDescriptorA 0xFFF0.5048 R/W Host Controller Root Hub Descriptor A Register 0x0100.0002
HcRhDescriptorB 0xFFF0.504C R/W Host Controller Root Hub Descriptor B Register 0x0000.0000
HcRhStatus 0xFFF0.5050 R/W Host Controller Root Hub Status Register 0x0000.0000
HcRhPortStatus [1] 0xFFF0.5054 R/W Host Controller Root Hub Port Status [1] 0x0000.0000
HcRhPortStatus [2] 0xFFF0.5058 R/W Host Controller Root Hub Port Status [2] 0x0000.0000

USB Configuration Registers
TestModeEnable 0xFFF0.5200 R/W USB Test Mode Enable Register 0x0XXX.XXXX
OperationalModeEna
ble 0xFFF0.5204 R/W USB Operational Mode Enable Register 0x0000.0000

According to the function of these registers, they are divided into four partitions, specifically for
Control and Status, Memory Pointer, Frame Counter and Root Hub. All of the registers should be read
and written as Dwords.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 70

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

6.3 Block Diagram

USB Host Controller

USB Interface

Host Controller

AHB Interface

AHB Slave AHB Master

Data Buffer

Bus
MasterList Processor

Interrupts

Frame
Management

I/O

SIE

Root
Hub

Control

Port1 Port2

Clock
Gen.

AHB

AHB Master

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 71

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

The master issues the address and data onto the bus when granted.

AHB Slave
The configuration of the Host Controller is through the slave interface.

List Processing
The List Processor manages the data structures from the Host Controller Driver and
coordinates all activities within the Host Controller.

Frame Management
Frame Management is responsible for managing the frame specific tasks required by the USB
specification and the OpenHCI specification.

Interrupt Processing
Interrupts are the communication method for HC-initiated communication with the Host
Controller Driver. There are several events that may trigger an interrupt from the Host
Controller. Each specific event sets a specific bit in the HcInterruptStatus register.

Host Controller Bus Master
The Host Controller Bus Master is the central block in the data path. The Host Controller Bus
Master coordinates all access to the AHB Interface. There are two sources of bus mastering
within Host Controller : the List Processor and the Data Buffer Engine.

Data Buffer
The Data Buffer serves as the data interface between the Bus Master and the SIE. It is a
combination of a 64-byte latched based bi-directional asynchronous FIFO and a single Dword
AHB Holding Register.

6.4 Data Structures

Except direct access to Host Controller by registers, Host Controller Driver must maintain the
following memory blocks to communicate with Host Controller :

• Endpoint Descriptor Lists

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 72

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

• Transfer Descriptor Lists

• Host Controller Communication Area (HCCA)

Note1 : All these data structures are located in system memory. The Host Controller will
access these memory blocks by DMA transfer. All Endpoint Descriptors, Transfer Descriptors,
HCCA, and transfer buffers must be set to non-cacheable region.

Note2 : Endpoint Descriptors and Transfer Descriptors must be aligned with 32 bytes address
boundary. Host Controller Communication Area must be aligned with 256 bytes address
boundary.

6.4.1 Endpoint Descriptor (ED) Lists

The OpenHCI Host Controller fulfills USB transfers by classifying Endpoints into four types of
Endpoint Descriptor lists. The Control ED list is pointed by HcControlHeadED register, the Bulk ED
list is pointed by HcBulkHeadED register, the Interrupt ED lists are pointed by InterruptTable of
HCCA, and the Isochronous ED list is linked behind the last 1m interval Interrupt ED. HCD must
create and maintain an ED for each endpoint of a USB device.

For all transfer types, they have the same Endpoint Descriptor format. The common format is
listed below:

Figure 6-1 Endpoint Descriptor Format

 3 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
 1 6 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Dword 0 — MPS F K S D EN FA
Dword 1 TD Queue Tail Pointer (TailP) —
Dword 2 TD Queue Head Pointer (HeadP) 0 C H
Dword 3 Next Endpoint Descriptor (NextED) —

The Endpoint Descriptor format of W90P710 USB Host Controller is compliant to OpenHCI
Specification 1.0a. In this document, you can find detail descriptions about each field in Endpoint
Descriptor.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 73

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

The Control ED list is created by Host Controller Driver (HCD), which should add any new EDs to
the end of the Control ED list. HCD must write the physical address of the first ED of Control ED list to
HcControlHeadED register. Thus, the HC can find the Control ED list and process all Control EDs.

Similarly, all Bulk EDs are placed in the Bulk ED list, which must be pointed by the
HcBulkHeadED register. And it’s the responsibility of HCD to maintain Bulk ED list and link
HcBulkHeadED.

The Interrupt ED lists are not directly pointed by any Host Controller operation registers, instead,
they are pointed by the InterruptTable of HCCA (Host Controller Communication Area), which is a
memory area created by HCD. In the HCCA, there are 32 entries InterruptTable with each entry
points to an Interrupt ED list. The structure of Interrupt ED lists will be explained in the HCCA section.

The end of each Interrupt ED list must be linked to the identical 1ms-polling interval Interrupt ED
list, which is also a part of each Interrupt ED list. You may have no any 1ms-polling interval Interrupt
EDs in some of the real scenes. If it was the case, then you will have a placeholder on the node a
1ms interval Interrupt ED should be inserted. It is also true for 2m, 4m, 8m, 16ms, and 32ms polling
interval Interrupt ED lists. In fact, an Interrupt ED list is composed of these various polling interval
Interrupt ED lists.

The Isochronous ED list must be linked to the end of the 1ms-polling interval Interrupt ED list, that
is, the end of any one Interrupt ED list. Host Controller Driver must maintain the Interrupt ED lists and
Isochronous ED list, including the maintenance of HCCA and InterruptTable. The HCCA is pointed by
HcHCCA register. Of course, HCD is responsible for creating HCCA and writing the physical address
of HCCA to HcHCCA register.

6.4.2 Transfer Descriptor

ED is used to describe the characteristics of a specific endpoint. ED itself does not make HC to
start any data transfer on USB bus. OpenHCI employs Transfer Descriptors (TDs) to describe the
details of a USB data transfer. A Transfer Descriptor (TD) is a system memory data structure that is
used by the Host Controller to define a buffer of data that will be moved to or from an endpoint.
Transfer Descriptors are linked to queues attached to EDs. The ED provides the endpoint address

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 74

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

to/from where the TD data is to be transferred. Host Controller Driver adds TDs to the queue and
Host Controller removes TDs from the queue. Once the transfer of a TD was completed, Host
Controller removed it from TD queue to the Done Queue. There are two TD types in OpenHCI,
General TD and Isochronous TD. The TD formats are listed below:

Figure 6-2 General Transfer Descriptor Format

 3 2 2 2 2 2 2 2 2 1 1 0 0
 1 8 7 6 5 4 3 1 0 9 8 3 0

Dword 0 CC EC T DI DP R —
Dword 1 Current Buffer Pointer (CBP)
Dword 2 Next TD (NextTD) 0
Dword 3 Buffer End (BE)

Figure 6-3 Isochronous Transfer Descriptor Format

 3 2 2 2 2 2 2 2 1 1 1 1 0 0 0
 1 8 7 6 4 3 1 0 6 5 2 1 5 4 0

Dword 0 CC – FC DI — SF
Dword 1 Buffer Page 0 (BP0) —
Dword 2 NextTD 0
Dword 3 Buffer End (BE)
Dword 4 Offset1/PSW1 Offset0/PSW0
Dword 5 Offset3/PSW3 Offset2/PSW2
Dword 6 Offset5/PSW5 Offset4/PSW4
Dword 7 Offset7/PSW7 Offset6/PSW6

The General and Isochronous Transfer Descriptor formats of W90P710 USB Host Controller are
compliant to OpenHCI Specification 1.0a. You can find detail descriptions about each field in a
General/Isochronous Transfer Descriptor in this document.

Transfer Descriptors are created and filled by HCD. After receiving an IRP (I/O Request Packet)
from USB Driver (refer to USB 1.1 Specification), according to the pipe, HCD must create appropriate
number of TDs to describe the data transfer. For example, for a control pipe IRP, HCD may create
three TDs for the SETUP stage, DATA stage, and STATUS stage transfers. The TDs must be linked

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 75

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

to TD list of the corresponding ED of the pipe specified in the original IRP. The TD list of an ED is
maintained by the HeadP and TailP fields of the ED itself.

6.4.3 Host Controller Communication Area

The Host Controller Communications Area (HCCA) is a 256-byte structure of system memory,
which is used by HCD to communicate with HC. HCCA must be aligned to 256 bytes address
boundary. This memory block must be set to non-cacheable memory region, because HC accesses
this memory block by DMA transfer. HCD must claim the physical address of HCCA by writing the
physical address to HcHCCA register to notify HC the address of HCCA.

Table 6-1 HCCA (Host Controller Communication Area)

Offset

Size
(bytes)

Name

Description

0 128 HccaInterrruptTable These 32 Dwords are pointers to interrupt EDs.
 0x80 2 HccaFrameNumber Contains the current frame number. This value

is updated by the HC before it begins
processing the periodic lists for the frame.

0x82 2 HccaPad1 When the HC updates HccaFrameNumber, it
sets this word to 0.

 0x84 4 HccaDoneHead

When the HC reaches the end of a frame and
its deferred interrupt register is 0, it writes the
current value of its HcDoneHead to this
location and generates an interrupt if interrupts
are enabled. This location is not written by the
HC again until software clears the WD bit in
the HcInterruptStatus register.
The LSb of this entry is set to 1 to indicate
whether an unmasked HcInterruptStatus was
set when HccaDoneHead was written.

 0x88 116 reserved Reserved for use by HC

The Host Controller Communication Area format of W90P710 USB Host Controller is compliant
to OpenHCI Specification 1.0a. Detail descriptions about each field in HCCA can be found in this
document.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 76

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

6.5 Programming Note

This section will demonstrate how to write a Host Controller Driver, including
• Initialization,
• Lists management,
• Interrupt processing, and
• Root hub management.

6.5.1 Initialization

The initialization of Host Controller contain the following steps :

1. Disable Host Controller interrupts by setting MasterInterruptEnable bit of
HcInterruptDisable register.

2. Issue a software reset command by setting HostControllerReset bit of
HcCommandStatus register and waiting for 10ms until the read value of
HostControllerReset become 0.

3. Allocate and create all necessary list structures and memory blocks, including HCCA, and
initialize all driver-maintained lists, including InterruptTable of HCCA (Note that HCCA
must be aligned with 256-bytes address boundary, while EDs and TDs must be aligned
with 32-bytes address boundary).

4. Clear HcControlHeadED and HcBulkHeadED register

5. Program the physical address of software allocated HCCA to HcHCCA register

6. Programe frame interval value (11,999 ± 6) to HcFmInterval register and 90% of this
value (recommended) to HcPeriodicStart register

7. Programe 0x628 to HcThreshold register (0x628 is the reset default value of
HcThreshold register)

8. Enable all transfer list by setting PeriodicListEnable, IsochronousEnable,
ControlListEnable, and BulkListEnable bits of HcControl register

9. Let Host Controller transit to USBOPERATIONAL state by writing 10b to
HostControllerFunctionalState field of HcControl register

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 77

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

10. Enable desired interrupts by programming corresponding bits to HcInterruptEnable
register and clear interrupt status of these interrupts by programming corresponding bits to
HcInterruptStatus register

11. Turn on the Root Hub port power by issuing SetGlobalPower command (writing
0x10000 to HcRhStatus register) (Note that W90P710 USB Root Hub uses global power
switching mode)

12. Enable W90P710 AIC (Advanced Interrupt Controller) USB interrupt, which is IRQ9

13. Connect Hub device driver

6.5.2 USB States

The Host Controller has four USB states visible to the Host Controller Driver via the Operational

Registers : USBOPERATIONAL, USBRESET, USBSUSPEND, and USBRESUME. These USB states are
stored in the HostControllerFunctionalState field of the HcControl register. The Host Controller
Driver can perform some state transitions by modifying the HostControllerFunctionalState field of
HcControl register. The meanings of two bits HostControllerFunctionalState field is listed in Table
6-2.

Table 6-2 HostControllerFunctionalState

HostControllerFunctionalState

00b USBRESET

01b USBRESUME

10b USBOPERATIONAL

11b USBSUSPEND

You can find possible transitions of USB states in Table 6-3. The followings are some notes about
the USB state transitions :

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 78

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

• After hardware reset, the Host Controller will enter USBRESET state.

• In any state, programming one to the HostControllerReset bit of HcCommandStatus
register, will force the Host Controller to perform software reset. After software reset, the
HC will enter USBSUSPEND state, instead of USBRESET state.

• If HC is in USBSUSPEND state, it will enter USBRESUME state either by HCD writing 0x1 to
HostControllerFunctionalState or by remote wakeup. To enable HC resume by remote
wakeup, HCD must enable the DeviceRemoteWakeupEnable bit of HcRhStatus
register. HCD can enable ResumeDetected interrupt to sense the case.

Table 6-3 USB state transition table

From state Convert to state Conditions

 USBRESET Hardware Reset
USBRESET USBOPERATIONAL Writing 0x2 to HostControllerFunctionalState

 USBSUSPEND 1. Writing 0x3 to HostControllerFunctionalState
2. Issue a Software Reset command

USBOPERATIONAL USBSUSPEND 1. Writing 0x3 to HostControllerFunctionalState
2. Issue a Software Reset command

 USBRESET Writing 0 to HostControllerFunctionalState

USBSUSPEND USBRESUME 1. Writing 0x3 to HostControllerFunctionalState
2. Resumed by device

 USBOPERATIONAL Writing 0x2 to HostControllerFunctionalState

 USBRESET Writing 0 to HostControllerFunctionalState

USBRESUME USBOPERATIONAL Writing 0x2 to HostControllerFunctionalState

 USBRESET Writing 0 to HostControllerFunctionalState

6.5.3 Add/Remove Endpoint Descriptors

In Host Controller architecture, a device endpoint is described by an ED (Endpoint Descriptor).
Host Controller has Control, Bulk, Interrupt, and Isochronous Endpoint Descriptor lists. The Control
and Bulk ED lists are referred to by HcControlHeadED register and HcBulkHeadED register
respectively. The Interrupt endpoints are organized into 32 Interrupt ED lists with each list pointed by

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 79

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

one of the HCCA InterruptTable entries. The Isochronous ED list is linked to the last ED of the
Interrupt ED list.

While receiving an IRP from USB Driver, HCD must identify the target endpoint of this IRP and try
to find out the ED corresponding to the endpoint. If the ED does not exist, HCD must create a new ED
and link it to the appropriate ED list. The Endpoint Descriptors in an ED list are linked together by the
NextED field of each ED. Each NextED links to the very next ED in an ED list. The NextED of the last
Endpoint Descriptor must points to zero to signify the end of an ED list.

To add an Endpoint Descriptor to an ED list, HCD should write physical address of the new ED to
the NextED of the last ED and write zero to the NextED of the new ED.

To remove an Endpoint Descriptor, HCD should find the previous ED of the ED to be removed.
HCD modified the NextED of the previous ED to point to the next ED of the ED to be removed, or
clear it if the ED to be removed is the last ED. However, before removing an ED, HCD must make
sure that Host Controller is not processing this ED and there’s no any TD waiting for service. HCD
can temporarily disable the processing of target ED list by configuring HcControl register and enable
the SOF interrupt. In the next the SOF interrupt, HCD can guarantee that the ED list is not processed
by Host Controller.

Figure 6-4 Remove an Endpoint Descriptor

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 80

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

6.5.4 Add/Remove Transfer Descriptors

The diagram of Endpoint Descriptor list linked with Transfer Descriptor queue is shown inFigure
10-1. The Transfer Descriptor queue of an ED is linked by its HeadP and TailP field.

According to OpenHCI specification, if HeadP is equal to TailP, then the TD queue is configured
as empty. In Figure 10-2, the HeadP and TailP pointer of last ED has pointed to the same Transfer
Descriptor, that is, the TD queue of this ED is empty. The TD there under the ED is a dummy TD.
While creating a new ED, HCD must also create a dummy TD for it, and let both HeadP and TailP
pointer point to this dummy TD.

To add a new TD into the TD queue, HCD can use the dummy TD. HCD writes information and
data buffer link to the dummy TD, and creates a new dummy TD. This can be accomplished by the
following steps :

1. Writing TD information and data buffer link to the current dummy TD

2. Creating a new dummy TD

3. Let the NextTD of the current TD point to the new dummy TD

4. Let TailP of ED point to the new dummy TD

Figure 6-5 ED list and TD queue

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 81

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Once the Host Controller has accomplished the processing of a TD, in spite of success or failure,
Host Controller will remove the TD from TD queue and put it into the Done Queue. Host Controller will
follow the following steps to remove a TD :

1. Modify the HeadP pointer of the Endpoint Descriptor (HC always service the first TD of the
TD queue) to link to the next TD, HC can obtain the link of the next TD by reading the
NextTD pointer of the first TD

2. Now the TD has been unlinked from TD queue, HC moves the TD to the head of Done
Queue, which is pointed by HcDoneHead register

3. HC moves the retired TD to the Done Queue by writing the contains of HcDoneHead to the
NextTD field of the retired TD, and then have the HcDoneHead point to the retired TD

In some situation, the client software may cancel an IRP before the IRP was completed. This

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 82

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

would result in canceling the TDs, which has been created for the IRP. To canceling TDs, HCD must
ensure that the TDs are not being processed by HC. To achieve this, HCD can set the skip bit of the
Endpoint Descriptor and wait for the next SOF by enabling SOF interrupt. If HCD can ensure the
target endpoint is temporary skipped by HC, it can safely remove any TDs of the endpoint. After
removing the TDs, HCD can clear the sKip bit and enable processing on the endpoint again.

In some other situation, transfer errors or endpoint stall may make an endpoint being halted, then
HCD must remove the residual TDs. Under these situations, Host Controller will stop processing on
this endpoint, because the Halted bit has been set. Thus, HCD can safely remove the TDs. After
removing the TDs and overcoming the error conditions, HCD can clear Halted bit and enable
processing on the endpoint again.

6.5.5 IRP Processing

The data structure of IRP is operation system dependent. Host Controller driver should be able to
interpret the content of any IRP. The processing on IRPs are different for each transfer type.

6.5.5.1 Control Transfer

For Control Transfer, HCD may create two or three TDs for a Control Transfer, depend on
specific request command. For a request command without DATA stage, HCD will create two TDs for
it. The first TD is created for SETUP stage, which has DATA0 toggle setting. It must have an eight
bytes data buffer to accommodate the request command. The second TD is created for STATUS
stage, which has DATA1 toggle setting. It must contain a zero bytes buffer.

For a request command with DATA stage, HCD will create three TDs for it. The first TD is created
for SETUP stage, which has DATA0 toggle setting and has an eight bytes buffer to accommodate the
request command. The second TD is created for DATA stage, which has DATA1 toggle setting and
has a data buffer to accommodate the transferred data for this command. The third TD is created for
STATUS stage, which has DATA1 toggle setting. It must contain a zero bytes buffer.

The following is an example code of Control Transfer :

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 83

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

info = TD_CC | TD_DP_SETUP | TD_T_DATA0;
td_fill(info, ctrl, 8, urb, cnt++);
if (data_len > 0)
{
 info = usb_pipeout(urb->pipe)? (TD_CC | TD_R | TD_DP_OUT | TD_T_DATA1) :
 (TD_CC | TD_R | TD_DP_IN | TD_T_DATA1);
 td_fill(info, data, data_len, urb, cnt++);
}
info = usb_pipeout(urb->pipe)? (TD_CC | TD_DP_IN | TD_T_DATA1) :
 (TD_CC | TD_DP_OUT | TD_T_DATA1);
td_fill(info, NULL, 0, urb, cnt++);
writel(OHCI_CLF, &ohci->regs->HcCommandStatus); /* start Control list */

6.5.5.2 Bulk Transfer

The maximum buffer size for a bulk Transfer Descriptor is 4096 bytes. Thus, for a Bulk Transfer,
HCD simply generates a TD for each 4096 bytes data length. For example, if the transfer buffer length
of an IRP is 9KB, then HCD will generate three TDs for this IRP.

Because OHCI handles the data toggles by itself, it just deed to set the toggle bits for the first TD.
The data toggle setting of the subsequent TDs were processed by OHCI controller. OHCI controller
can get the toggle value from the DataToggle bit of Endpoint Descriptor.

The following is an example code of Bulk Transfer :

info = usb_pipeout(urb->pipe)? (TD_CC | TD_DP_OUT) : (TD_CC | TD_DP_IN);
while(data_len > 4096)
{
 td_fill(info | (cnt? TD_T_TOGGLE : toggle), data, 4096, urb, cnt);
 data = (VOID *)((UINT32)data + 4096);
 data_len -= 4096;
 cnt++;
}
info = usb_pipeout(urb->pipe)? (TD_CC | TD_DP_OUT) : (TD_CC | TD_R | TD_DP_IN);
td_fill(info | (cnt? TD_T_TOGGLE : toggle), data, data_len, urb, cnt);
cnt++;
writel (OHCI_BLF, &ohci->regs->HcCommandStatus); /* start bulk list */

6.5.5.3 Interrupt Transfer

The maximum buffer size for an Interrupt Transfer Descriptor is 64 bytes. The USB Client
Software should not deliver an IRP with transfer length exceeding 64 bytes. HCD makes only one TD
for an Interrupt Transfer, which is one-shot. On completion of the TD, HCD may re-submit the

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 84

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

identical TD to implement the next Interrupt Transfer. Thus it can fulfill the periodic polling of an
Interrupt Endpoint.

The following is an example code of Interrupt Transfer :

info = usb_pipeout (urb->pipe)? (TD_CC | TD_DP_OUT | toggle) :
 (TD_CC | TD_R | TD_DP_IN | toggle);
td_fill(info, data, data_len, urb, cnt++);

6.5.5.4 Isochronous Transfer

An Isochronous TD may contain one to eight consecutive packets with specified starting frame
number. Depending on implementation of operating system, several isochronous packets to be
transferred may be carried in a single IRP. HCD must prepare appropriate Isochronous TDs for these
isochronous packets. For example, in Linux’s implementation, HCD will generate a single Isochronous
TD for each isochronous packet. According to the starting frame specified in the IRP, HCD will
increase the starting frame of each consecutive Isochronous TD. The transfer length of each
isochronous packet is specified by Client Software and should not be larger than 1023 bytes.

The following is an example code of Isochronous Transfer :

for (cnt = 0; cnt < urb->number_of_packets / ISO_FRAME_COUNT; cnt++)
{
 iso_td_fill(TD_CC | ((ISO_FRAME_COUNT - 1) << 24) | TD_ISO |
 ((urb->start_frame + cnt * ISO_FRAME_COUNT) & 0xffff),
 (UINT8 *) data, urb, cnt);
}

6.5.6 Interrupt Processing

W90P710 USB Host Controller may raise the following interrupts :

• SchedulingOverrun

• WritebackDoneHead

• StartOfFrame

• ResumeDetected

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 85

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

• UnrecoverableError

• FrameNumberOverflow

• RootHubStatusChange

• OwnershipChange

6.5.6.1 SchedulingOverrun Interrupt

This interrupt is set when the USB schedule for the current frame overruns. The presence of this
interrupt means that HCD has scheduled too many transfers. HCD may temporarily stop one or more
endpoints to reduce bandwidth.

6.5.6.2 WritebackDoneHead Interrupt

This interrupt is set after Host Controller has written HcDoneHead to HccaDoneHead. On this
interrupt, HCD can obtain the TD done queue by reading HccaDoneHead. HCD may first reverse the
done queue by traveling the done queue, because the TDs were retired in stack order. Then HCD can
start processing on each TD. More detailed description is introduced in the next section.

6.5.6.3 StartOfFrame Interrupt

This interrupt is set on each start of a frame. Generally, HCD will not enable this interrupt. This
interrupt is generally used to identify the starting of a next frame. For example, if you are going to
remove a TD, you must ensure that the endpoint is not currently processed by Host Controller. To
accomplish this, HCD can temporarily set the sKip bit of its ED and enable StartOfFrame interrupt. In
the next coming StartOfFrame interrupt, HCD can ensure that the endpoint is not currently processed
by Host Controller, and it can remove the TD.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 86

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

6.5.6.4 ResumeDetected Interrupt

This interrupt is set when Host Controller detects that a device on the USB bus is asserting a
resume signal. If Host Controller is in USBSUSPEND state, the resume signal will make Host Controller
automatically enter USBRESUME state. Note that if you want to make ConnectStatusChange event
being treated as a resume event, you must have written a SetRemoteWakeupEnable command to
HcRhStatus register.

6.5.6.5 UnrecoverableError Interrupt

The Host Controller will raise this interrupt when it detects a system error not related to USB or an
error that cannot be reported in any other way. HCD may try to reset Host Controller in this case.

6.5.6.6 FrameNumberOverflow Interrupt

The Host Controller will raise this interrupt when the MSB bit of FrameNumber (bit 15) of
HcFmNumber register toggles value from 0 to 1 or 1 to 0, and after HccaFrameNumber has been
updated. Because the Host Controller has only 16-bits frame counter, the HCD may want to maintain
a wider range frame counter. If the HCD want to maintain a 32-bits frame counter, it can increase the
upper 16-bits value by each two FrameNumberOverflow interrupt.

6.5.6.7 RootHubStatusChange Interrupt

When the OverCurrentIndicatorChange bit of HcRhStatus register, or the
ConnectStatusChange, PortEnableStatusChange, PortSuspendStatusChange, or
PortResetStatusChange bit of HcRhPortStatus[1/2] set, the Host Controller would raise the
RootHubStatusChange interrupt.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 87

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

6.5.6.8 OwnershipChange Interrupt

This Host Controller would raise this interrupt when HCD set the OwnershipChangeRequest
field of HcCommandStatus register. Due to the characteristics of embedded system, almost all
applications would not have a SMM driver, the OwnershipChange interrupt would not be used.

The following is an example implementation of Host Controller interrupt service routine :

VOID hc_interrupt(int vector)
{
 OHCI_T *ohci = _W90P710 _OHCI;
 OHCI_REGS_T *regs = ohci->regs;
 INT ints;

 _InUsbInterrupt = 1;

 ints = ohci->regs->HcInterruptStatus;

 if ((ohci->hcca->done_head != 0) &&
 !((UINT32)(ohci->hcca->done_head) & 0x01))
 {
 ints = OHCI_INTR_WDH;
 }
 else if ((ints = (readl(®s->HcInterruptStatus) &
 readl(®s->HcInterruptEnable))) == 0)
 {
 USB_printf("Not the wanted interrupts : %x\n", ints);
 }

 if (ints & OHCI_INTR_UE)
 {
 ohci->disabled++;
 USB_printf("Error! - OHCI Unrecoverable Error, controller disabled\n");
 hc_reset (ohci);
 }

 if (ints & OHCI_INTR_WDH)
 {
 writel(OHCI_INTR_WDH, ®s->HcInterruptDisable);
 dl_done_list(ohci, dl_reverse_done_list (ohci));
 writel(OHCI_INTR_WDH, ®s->HcInterruptEnable);
 }

 if (ints & OHCI_INTR_SO)
 {
 USB_printf("Error! - USB Schedule overrun, count : %d\n",

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 88

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

 (readl(&ohci->regs->HcCommandStatus) >> 16) & 0x3);
 writel(OHCI_INTR_SO, ®s->HcInterruptEnable);
 }

 if (ints & OHCI_INTR_SF)
 {
 UINT32 frame = ohci->hcca->frame_no & 1;

 writel(OHCI_INTR_SF, ®s->HcInterruptDisable);
 if (ohci->ed_rm_list[!frame] != NULL)
 {
 dl_del_list(ohci, !frame);
 }
 if (ohci->ed_rm_list[frame] != NULL)
 writel(OHCI_INTR_SF, ®s->HcInterruptEnable);
 }

 writel(ints, ®s->HcInterruptStatus);
 writel(OHCI_INTR_MIE, ®s->HcInterruptEnable);

 _InUsbInterrupt = 0;
}

6.5.7 Done Queue Processing

The Done Queue is built by the Host Controller and referred to by the HcDoneHead register. No
matter successful or failed, the retired Transfer Descriptors must be put into the Done Queue by Host
Controller. When Host Controller reaches the end of a frame (1ms) and its internal deferred interrupt
register is 0, it writes the location of Done Queue to HccaDoneHead and raises a
WritebackDoneHead interrupt. HCD can take the Done Queue by servicing the
WritebackDoneHead interrupt.

6.5.7.1 Reverse Done Queue

Note that the TDs are queued into the Done Queue in stack order. The latest queued TD is linked
at the head of the Done Queue, while the earliest queued TD is linked at the end of the Done Queue.
HCD must reverse the Done Queue before it can start to process the retired TDs. The following is an
example routine of reversing Done Queue :

static TD_T *dl_reverse_done_list(OHCI_T * ohci)
{

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 89

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

 UINT32 td_list_hc;
 TD_T *td_rev = NULL;
 TD_T *td_list = NULL;
 URB_PRIV_T *urb_priv = NULL;

 td_list_hc = (UINT32)(ohci->hcca->done_head) & 0xfffffff0;
 ohci->hcca->done_head = 0;

 while (td_list_hc)
 {
 td_list = (TD_T *)td_list_hc;

 if (TD_CC_GET((UINT32)td_list->hwINFO))
 {
 urb_priv = (URB_PRIV_T *)td_list->urb->hcpriv;
 TD_CompletionCode(TD_CC_GET((UINT32)(td_list->hwINFO)));
 if (td_list->ed->hwHeadP & 0x1)
 {
 if (urb_priv && ((td_list->index + 1) < urb_priv->length))
 {
 td_list->ed->hwHeadP =
 (urb_priv->td[urb_priv->length - 1]->hwNextTD & 0xfffffff0) |
 (td_list->ed->hwHeadP & 0x2);
 urb_priv->td_cnt += urb_priv->length - td_list->index - 1;
 }
 else
 td_list->ed->hwHeadP &= 0xfffffff2;
 }
 }

 if ((td_list->ed->type == PIPE_ISOCHRONOUS) &&
 (td_list->hwPSW[0] >> 12) &&
 ((td_list->hwPSW[0] >> 12) != TD_DATAUNDERRUN))
 {
 /* PSW error */
 TD_CompletionCode(td_list->hwPSW[0] >> 12);
 }

 td_list->next_dl_td = td_rev;
 td_rev = td_list;
 td_list_hc = (UINT32)(td_list->hwNextTD) & 0xfffffff0;
 } /* end of while */

 return td_list;
}

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 90

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

6.5.7.2 Processing Done Queue

Now that the Done Queue is inversed into its original order, HCD can start to process the TDs
one by one. For each TD, HCD checks whether the TD was completed with any errors. While
processing each TD, the HCD must determine whether an IRP was completed. HCD recorded the
TDs linked to a specific IRP and would know whether all TDs belong to the same IRP had been
completed. In the example code, once all TDs of an IRP had been completed, HCD would invoke
sochi_return_urb() to reclaim the IRP.

In the sochi_return_urb() routine, HCD would invoke the complete routine of the IRP. The
complete routine is a callback routine provided by Client Software or USB Driver and used to notify
the completion of an IRP. The Client Software or USB Driver may collect data received by Host
Controller or do nothing, it depends on the implementation. In addition to invoke complete routine,
HCD may release the IRP or re-submit the IRP if it is the Interrupt Transfer type.

6.5.8 Root Hub

The Root Hub is integrated into Host Controller and the control of Root Hub is done by accessing
register files. W90P710 Host Controller has provided several Root Hub related registers. The
HcRhDescriptorA and HcRhDescriptorB registers are informative registers, which are used to
describe the characteristics and capabilities of Root Hub. The HcRhStatus register presents the
current status and reflects the change of status of Root Hub. The HcRhPortStatus register presents
the current status and reflects the change of status of a Root Hub port. W90P710 Root Hub has two
hub ports, the HcRhPortStatus[1] and HcRhPortStatus[2] are respectively dedicated to port 0 and
port 1.

6.5.8.1 HcRhDescriptorA and HcRhDescriptorB

The HcRhDescriptorA and HcRhDescriptorB registers are informative registers, which are
used to describe the characteristics and capabilities of Root Hub. The characteristics and capabilities
of W90P710 Root Hub are listed in the followings :

• Two downstream ports

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 91

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

• Ports are power switched

• Power switching mode is global power switch

• Is not a compound device

• Over-current status is reported collectively for all downstream ports

• Power-on-to-power-good-time is 2ms

• Devices attached to any ports are removable

6.5.8.2 HcRhStatus

The HcRhStatus register is used to control and monitor the Root Hub status. The Root Hub can
be controlled by the following actions :

• ClearGlobalPower – write ‘1’ to bit 0 to turn off power to all ports

• SetRemoteWakeupEnable – write ‘1’ to bit 15 to enable device remote wakeup

• SetGlobalPower – write ‘1’ to bit 16 to turn off power to all ports

• ClearRemoteWakeupEnable – write ‘1’ to bit 31 to disable device remote wakeup
In addition, the HcRhStatus register also indicates the following status :

• OverCurrentIndicator – bit 2 indicates the over-current status

• DeviceRemoteWakeupEnable – bit 15 indicates the remote wakeup status. If this bit
was set, the ConnectStatusChange is determined as a remote wakeup event

• OverCurrentIndicatorChange – This bit was set when the OverCurrentIndicator bit
changed

6.5.8.3 HcRhPortStatus[1] and HcRhPortStatus[2]

The HcRhPortStatus[1] and HcRhPortStatus[1] register is used to control and monitor the Root
Hub port status. HcRhPortStatus[1] is dedicated to port 0 and HcRhPortStatus[2] dedicated to port
1 respectively. The lower word is used to reflect the port status, whereas the upper word is used to
reflect the changing of lower word status bits. Some status bits are implemented with special write
behavior. You can do the following actions to control the Root Hub port :

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 92

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

• ClearPortEnable – write ‘1’ to bit 0 to clear the PortEnableStatus bit

• SetPortEnable – write ‘1’ to bit 1 to set the PortEnableStatus bit

• SetPortSuspend – write ‘1’ to bit 2 to clear the PortSuspendStatus bit

• ClearSuspendStatus – write ‘1’ to bit 3 to clear the PortSuspendStatus bit

• SetPortReset – write ‘1’ to bit 4 to set port reset signaling

• SetPortPower – write ‘1’ to bit 8 to set the PortPowerStatus bit

• ClearPortPower – write ‘1’ to bit 9 to clear the PortPowerStatus bit

You can get the current status of the Root Hub port by reading the following bits :

• CurrentConnectStatus – bit 0, reflect the current connect status of the Root Hub port

• PortEnableStatus – bit 1, indicate whether the port is enabled or disabled

• PortSuspendStatus – bit 2, indicate the port is suspended or not

• PortResetStatus – bit 4, indicate the Root Hub is asserting reset signal on this port

• PortPowerStatus – bit 8, reflect the port’s power status

• LowSpeedDeviceAttached – bit 9, indicate the speed of the device attached to this port

The following bits indicate the change of status bits. Write ‘1’ to these bits will clear the events :

• ConnectStatusChange – bit 16, indicate the connect or disconnect events

• PortEnableStatusChange – bit 17, set when hardware event clear the
PortEnableStatus bit

• PortSuspendStatusChange – bit 18, set when the full resume sequence has been
completed

• PortResetStatusChange – bit 20, set at the end of the 10-ms port reset signal

6.5.8.4 Virtual Root Hub

Obviously, the Root Hub control is quite different from a hub device. The hardware dependent
parts of Root Hub will increase the complexity of implementing the USB Driver. Thus, to make the
Root Hub appear as a normal hub device seems be a better solution. To accomplish this, HCD must

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 93

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

be able to determine the standard request to Root Hub and reply the request to make the upper layer
software feel like that they are communicating with a real hub device.

First, the standard request to the Root Hub must be intercepted. Refer to the following code :

static INT sohci_submit_urb(URB_T * urb)
{
 /* some code assertted here */

 /* handle a request to the virtual root hub */
 if (usb_pipedevice(pipe) == ohci->rh.devnum)
 return rh_submit_urb(urb);

 /* some code assertted here */

}

As it illustrated, all IRPs are forwarded to HCD’s sohci_submit_urb() routine. This routine will
further translate IRPs into Transfer Descriptors, which finally make Host Controller issue transactions
on USB bus. But Root Hub is not a real device on USB bus, it’s embedded in Host Controller itself.
So, in the previous program segment, the requests to the Root Hub must be intercepted and
forwarded them to the dedicated routine rh_submit_urb().

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 94

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

7 USB Device Controller

7.1 Overview

The USBD controller interfaces the AHB bus and the USB bus. The USB controller contains both
the AHB master interface and AHB slave interface. CPU programs the USB controller through the AHB
slave interface. For IN or OUT transfer, the USBD controller needs to write data to memory or read data
from memory through the AHB master interface. The USBD controller also contains the USB
transceiver to interface the USB.

It consists of four endpoints, designated EP0, EPA, EPB and EPC. Each is intended for a particular
use as described below:

 EP0: the default endpoint uses control transfer (In/Out) to handle configuration and control
functions required by the USB specification. Maximum packed size is 16 bytes.

 EPA: designed as a general endpoint. This endpoint could be programmed to be an Interrupt
IN endpoint or an Isochronous IN endpoint or a Bulk In endpoint or Bulk OUT endpoint.

 EPB: designed as a general endpoint. This endpoint could be programmed to be an Interrupt
IN endpoint or an Isochronous IN endpoint or a Bulk In endpoint or Bulk OUT endpoint.

 EPC: designed as a general endpoint. This endpoint could be programmed to be an Interrupt
IN endpoint or an Isochronous IN endpoint or a Bulk In endpoint or Bulk OUT endpoint.

The USB controller has built-in hard-wired state machine to automatically respond to USB standard
device request. It also supports to detect the class and vendor requests. For GetDescriptor request and
Class or Vendor command, the firmware will control these procedures.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 95

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

7.2 Block Diagram

Figure 7-1 USBD Controller Block Diagram

SIE

UCTL

UEPA

UEPC

UCOM

UREG

AHB
IF

USB
XTR

D+

D-

AHB

UEPBMUX

7.3 Register Map

Register Address R/W Description Reset Value
USB_CTL 0xFFF0.6000 R/W USB control register 0x0000.0000
USB_VCMD 0xFFF0.6004 R/W USB class or vendor command register 0x0000.0000
USB_IE 0xFFF0.6008 R/W USB interrupt enable register 0x0000.0000
USB_IS 0xFFF0.600C R USB interrupt status register 0x0000.0000
USB_IC 0xFFF0.6010 R/W USB interrupt status clear register 0x0000.0000
USB_IFSTR 0xFFF0.6014 R/W USB interface and string register 0x0000.0000
USB_ODATA0 0xFFF0.6018 R USB control transfer-out port 0 register 0x0000.0000
USB_ODATA1 0xFFF0.601C R USB control transfer-out port 1 register 0x0000.0000
USB_ODATA2 0xFFF0.6020 R USB control transfer-out port 2 register 0x0000.0000
USB_ODATA3 0xFFF0.6024 R USB control transfer-out port 3 register 0x0000.0000

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 96

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

USB_IDATA0 0xFFF0.6028 R/W USB transfer-in data port0 register 0x0000.0000
USB_IDATA1 0xFFF0.602C R/W USB control transfer-in data port 1 0x0000.0000
USB_IDATA2 0xFFF0.6030 R/W USB control transfer-in data port 2 0x0000.0000
USB_IDATA3 0xFFF0.6034 R/W USB control transfer-in data port 3 0x0000.0000
USB_SIE 0xFFF0.6038 R USB SIE status Register 0x0000.0000
USB_ENG 0xFFF0.603C R/W USB Engine Register 0x0000.0000
USB_CTLS 0xFFF0.6040 R USB control transfer status register 0x0000.0000
USB_CONFD 0xFFF0.6044 R/W USB Configured Value register 0x0000.0000
EPA_INFO 0xFFF0.6048 R/W USB endpoint A information register 0x0000.0000
EPA_CTL 0xFFF0.604C R/W USB endpoint A control register 0x0000.0000
EPA_IE 0xFFF0.6050 R/W USB endpoint A Interrupt Enable register 0x0000.0000
EPA_IC 0xFFF0.6054 W USB endpoint A interrupt clear register 0x0000.0000
EPA_IS 0xFFF0.6058 R USB endpoint A interrupt status register 0x0000.0000
EPA_ADDR 0xFFF0.605C R/W USB endpoint A address register 0x0000.0000
EPA_LENTH 0xFFF0.6060 R/W USB endpoint A transfer length register 0x0000.0000
EPB_INFO 0xFFF0.6064 R/W USB endpoint B information register 0x0000.0000
EPB_CTL 0xFFF0.6068 R/W USB endpoint B control register 0x0000.0000
EPB_IE 0xFFF0.606C R/W USB endpoint B Interrupt Enable register 0x0000.0000
EPB_IC 0xFFF0.6070 W USB endpoint B interrupt clear register 0x0000.0000
EPB_IS 0xFFF0.6074 R USB endpoint B interrupt status register 0x0000.0000
EPB_ADDR 0xFFF0.6078 R/W USB endpoint B address register 0x0000.0000
EPB_LENTH 0xFFF0.607C R/W USB endpoint B transfer length register 0x0000.0000
EPC_INFO 0xFFF0.6080 R/W USB endpoint C information register 0x0000.0000
EPC_CTL 0xFFF0.6084 R/W USB endpoint C control register 0x0000.0000
EPC_IE 0xFFF0.6088 R/W USB endpoint C Interrupt Enable register 0x0000.0000
EPC_IC 0xFFF0.608C W USB endpoint C interrupt clear register 0x0000.0000
EPC_IS 0xFFF0.6090 R USB endpoint C interrupt status register 0x0000.0000
EPC_ADDR 0xFFF0.6094 R/W USB endpoint C address register 0x0000.0000
EPC_LENTH 0xFFF0.6098 R/W USB endpoint C transfer length register 0x0000.0000
EPA_XFER 0xFFF0.609C R/W USB endpoint A remain transfer length register 0x0000.0000
EPA_PKT 0xFFF0.60A0 R/W USB endpoint A remain packet length register 0x0000.0000
EPB_XFER 0xFFF0.60A4 R/W USB endpoint B remain transfer length register 0x0000.0000
EPB_PKT 0xFFF0.60A8 R/W USB endpoint B remain packet length register 0x0000.0000
EPC_XFER 0xFFF0.60AC R/W USB endpoint C remain transfer length register 0x0000.0000
EPC_PKT 0xFFF0.60B0 R/W USB endpoint C remain packet length register 0x0000.0000

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 97

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

7.4 Functional descriptions

Please refer to Universal Serial Bus Specification and Class Specification Documents for detailed
USB protocol.

7.4.1 Initialization

The initialization of USBD controller contains the following steps:

1. Set SIE_RCV bit of register USB_CTL to set the RCV source generated by the USB
transceiver,

2. Set SUSP bit of register USB_CTL to enable suspend detect.

3. Set CCMD bit of register USB_CTL to enable the class command decode control.

4. Set VCMD bit of register USB_CTL to enable the vendor command decode.

5. Set bits RST_ENDI and RSTI of USB_IE register to enable the reset interrupt.

6. Set bits CDII and CDOI of USB_IE register to enable the control data in and control data out
interrupt.

7. Set bits VENI and CLAI of USB_IE register to enable the vendor and class command
interrupt of control pipe.

8. Set bits GSTRI, GCFGI and GDEVI of USB_IE register to enable the get string,
configuration, and device descriptor command interrupt.

9. Set bits RUM and SUSI of USB_IE register to enable the USB suspend and resume detect
interrupt.

10. Set USB_IFSTR register to enable the interface and string descriptors control. If didn’t fill this
register, USBD only enable the interface 0 and string descriptor 0 control.

11. Configure CONFD in register USB_CONFD to the configuration wishes to be enabled.
Note: USBD won’t work if this value is not consist with CONF in register USB_CTLS.

12. After finished the above steps, set the USB_EN bit of USB_CTL to enable USB engine. The

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 98

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

host will detect a device attached.

7.4.2 Endpoint Configuration

Configure the endpoint of USBD controller contains the following steps:

1. Configure registers EPx_INFO according to the application.
Using mass storage device as an example, programmer could configure endpoint A to bulk
out endpoint 1, belongs to configuration 1 and interface 0, with maximum packet size 64
bytes by writing 0x20400011 to register EPA_INFO, and configure endpoint B to bulk in
endpoint 2, belongs to configuration 1 and interface 0, with maximum packet size 64 bytes by
writing 0x20400012 to register EPB_INFO.
Note: This configuration must be consistent with configuration, interface and endpoint
descriptors

2. Enable endpoint interrupts by configure register EPx_IE according to application. Such as
EPx_DMA_IE bit to enable the endpoint DMA interrupt.

3. If the endpoint was configuring to be Isochronous IN, the programmer could set the
EPx_THRE bit of EPx_CTL register to control the available space in FIFO when DMA
accesses memory.

4. Set the EPx_RST bit of EPx_CTL register to reset the endpoint.

5. Set the EPx_EN bit of EPx_CTL register to active the endpoint.

6. If USB host select an alternative setting for a specified interface, configure register
EPx_INFO accordingly.

7.4.3 Interrupt Service Routine

The interrupt service routine should check 4 registers USB_IS and EPx_IS, if any interrupt in
USB_IE or EPx_IE register is enabled. After service an interrupt, ISR has to set the relative bit of that
interrupt in register USB_IC or EPx_IC to clear the interrupt status.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 99

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

void USBD_Handler()
{

UINT32 volatile Irq,
Irq = inpw(REG_USB_IS);
if (Irq & USB_RSTI)

USB_ISR_Reset_Start();
else if (Irq & USB_GDEVI)

USB_ISR_Device_Descriptor();
else if ,,,

Irq = inpw(REG_USB_EPA_IS);
if (Irq & USB_EPA_DMA)

USB_ISR_EPA_DMA_Complete();
else if ,,,

Irq = inpw(REG_USB_EPB_IS);
if (Irq & USB_EPB_DMA)

USB_ISR_EPB_DMA_Complete();
else if ,,,

Irq = inpw(REG_USB_EPC_IS);
if (Irq & USB_EPC_DMA)

USB_ISR_EPC_DMA_Complete();
else if ,,,

}

Note: If Reset End interrupt is generated, ISR must clear relative control register status if needed,
such as DMA control of each endpoint. Because the reset signal only reset the engine, it wouldn’t
clear the control register.

7.4.4 Endpoint 0 Operation

The operation of endpoint 0 (control pipe) should base on register USB_IS. Figure 10-2 is the
flowchart for the ISR handling endpoint 0 operations. The next section will describe how to respond
the Get Device Descriptor standard request.

Figure 10-2 USBD Controller Block Diagram

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 100

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Decide
Interrupt type

1. Get request from
USB_ODATAx
2. Parse request for the ID host
is asking for (e.x. Language,
Vendor...)
3. Set flag according to the
command
4.Set bit SDO_RD of
USB_ENG

1. Get command from
USB_ODATAx
2. Parse class command
3. Set flag according to the
command
4.Set bit SDO_RD of USB_ENG

1. Get command from
USB_ODATAx
2. Parse vendor command
3. Set flag according to the
command
4.Set bit SDO_RD of USB_ENG

1. Get data from
USB_ODATAx according to
the command get in previous
interrupt
2. Parse data of class or
vendor command
3.Set bit SDO_RD of
USB_ENG

1. Put data to USB_IDATAx
according to the flag set in
previous interrput
2. Set length in USB_CVCMD
3. Set bit CV_DAT of
USB_ENG

1. Get request from
USB_ODATAx
2. Set flag according to the
request
3.Set bit SDO_RD of USB_ENG

Enter
ISR

Exit
ISR

CDIS

Clear Interrupt
Flag in USB_IC

CDOS VENS CLAS GSTRS GCFGS

1. Get request from
USB_ODATAx
2. Set flag according to the
request
3.Set bit SDO_RD of USB_ENG

GEVS

7.4.5 Get Descriptor

If the host sends the standard request to get Device descriptor, the programmer could follow the
steps below.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 101

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

1. A get device descriptor interrupt occurred, and the program will execute the get device
descriptor sub-interrupt service routine.

2. Check the control transfer received packet size from USB_CTLS register. If the size is 8
bytes, assign the device descriptor length and set the DATA OUT ready bit (SDO_RD) of
USB_ENG register. Otherwise, if the size is not 8 bytes, set the Stall control bit (CV_STL) of
USB_ENG register.

3. Clear the Device Descriptor interrupt in USB_IC register.

4. Then the control data in interrupt will occur after acknowledge the device descriptor interrupt.
The program will execute the relative sub-interrupt service routine.

5. The control data in FIFO is the registers USB_IDATA0 ~ USB_IDATA3 (total 16 bytes). If
the device descriptor length is over 16 bytes, the programmer should separate it into several
16 bytes.

Note: Each control data in interrupt only can send 16 bytes data.

6. Fill the device descriptor data into control pipe FIFO (USB_IDATA0 ~ USB_IDATA3), and
then set the transfer length into USB_CVCMD register.

7. Clear the control data in interrupt in USB_IC register.

8. repeat the step 4, 6, 7 until all descriptor data has been sent.

7.4.6 Endpoint A ~ C Operation

Endpoint A~C should follow steps below for receive and transmit data.

1. Check bit EPx_RDY of register EPx_CTL, endpoint is busy if this bit is set.

2. Configure register EPx_ADDR with the SDRAM address for DMA to/ from USBD.

3. Configure register EPx_LENTH with the data size intend to transmit/ receive.

4. Set bit EPx_RDY of register EPx_CTL.

5. Polling EPx_RDY of register EPx_CTL until it is cleared or wait for EPx_DMA_IS interrupt in
register EPx_IS.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 102

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

7.4.7 Example

How to configure the USBD to be a mass storage? The programmer could follow the steps below
to setup the hardware dependent. About the mass storage protocol, the programmer should refer to
the relative specification.

1. Configure the endpoint (refer to endpoint configuration section 10.4.2). The application needs
two endpoints in bulk-only mass storage. Therefore, the user can set the EPA for bulk IN,
endpoint 1 and maximum packet size is 64bytes; EPB for bulk OUT, endpoint 2 and
maximum packet size is 64 bytes.

2. Install the USBD interrupt service routine to Advanced Interrupt Controller (refer system
library users manual).

3. Initial the USBD hardware such as interrupt enable (refer to initialization section 10.4.1).

4. After finish the above steps, plug the USBD into the host.

5. The host will ask the descriptors such as device, configuration, and string descriptor. How to
answer the descriptor? The programmer could refer to Get Descriptor section 10.4.5.

6. The host will send the class command (0xa1fe) after get descriptor. This command uses to
get MAX LUN. The device shall return one bytes of data that contains the maximum LUN
supported by the device. The Logical Unit Numbers on the device shall be numbered
contiguously starting from LUN 0 to a maximum LUN of 15 (0xF). In this application, the
programmer may return 0 for one drive.

7. The host will begin to send the mass storage class command to get the removable drive
information. These class commands transfer will through the EPA and EPB endpoints. The
user can refer the endpoint operation section 10.4.6 to get more detail information.

8. After the above steps, the host can appreciate a removable drive plug-in. And the user can
access it using Windows File explorer.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 103

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

8 SDIO Host Controller

8.1 Overview

The SDIO Host Controller of W90P710 supports Secure Digital interface. This interface can directly
connect to MMC / SD / SDIO cards. The SDIO host controller also supports DMA function to reduce the
intervention of CPU for data transfer between flash memory card and system memory.

There are two 512B internal buffers embedded in theSDIO host controller to buffer the data
temporally for DMA transfer between flash memory card and system memory.

8.2 Block Diagram
Figure 8-1 SDIO Host Block Diagram

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 104

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

FMI_AHB

FMI_BMFMI_IO

FMI_SDH

FMI_FB

AHB Bus Interface

Secure Digital Interface

Control Signals Data Path Address Path

8.3 Registers

Register Offset R/W Description Reset Value
FMI Registers (6)
SDGCR 0xFFF0.7000 R/W SD Global Control Register 0x0000.0000
SDDSA 0x FFF0.7004 R/W SD DMA Transfer Starting Address Register 0x0000.0000
SDBCR 0x FFF0.7008 R/W SD DMA Byte Count Register 0x0000.0000
SDIER 0x FFF0.700C R/W SD Interrupt Enable Register 0x0000.0000
SDISR 0x FFF0.7010 R/W SD Interrupt Status Register 0x0000.0000
SDBIST 0x FFF0.7014 R/W SD BIST Register 0x0000.0000

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 105

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Secure Digital Registers (8)
SDICR 0xFFF0.7300 R/W SD Interface Control Register 0x0000.0000
SDHINI 0x FFF0.7304 R/W SD Host Initial Register 0x0000.0018
SDIIER 0x FFF0.7308 R/W SD Interface Interrupt Enable Register 0x0000.0000
SDIISR 0x FFF0.730C R/W SD Interface Interrupt Status Register 0x0000.00XX
SDAUG 0x FFF0.7310 R/W SD Command Argument Register 0x0000.0000
SDRSP0 0x FFF0.7314 R SD Receive Response Token Register 0 0xXXXX.XXXX
SDRSP1 0x FFF0.7318 R SD Receive Response Token Register 1 0x0000.XXXX
SDBLEN 0x FFF0.731C R/W SD Block Length Register 0x0000.0000
Internal Buffer Access Register (256)
FB0_0
…..
FB0_127

0x FFF0.7400
…..

0x FFF0.75FC

R/W Flash Buffer 0 Undefined

FB1_0
…..
FB1_127

0x FFF0.7800
…..

0x FFF0.79FC

R/W Flash Buffer 1 Undefined

8.4 SDIO Host Controller

Accessing data through SDIO host controller interface takes two steps. For reading data from SD
card, it should read the data from SD to SDIO host controller buffer, and then read the data from the
buffer to SDRAM. Similarly, for writing data to SD card, the data should be copied to SDIO host
controller buffer, and then write the data from this buffer to SD card.

There are 2 buffers in SDIO host controller. For better efficiency, user can copy data from
SDRAM to one of them while writing data to SD card from the other., or read data from SD card to
one buffer while moving data to SDRAM from the other.

8.4.1 SDIO host controller Initialization Sequence

1. Set the SWRST bit of SDGCR register for 10ms to reset the SDIO host controller engine, and
then clear it.

2. Set the SDIOEN bit of SDGCR register to enable the SDIO host controller operation.
3. Set the ERRIEN, DRdIEN, DWrIEN, SDHIEN, and SDIOEN bits of SDIOIER register to enable

all interrupts.

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 106

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

8.4.2 Move data from SDRAM to SDIO host controller buffer

1. Set WrSel bit of SDGCR register to select buffer for use. Set [000] is use buffer0, and set [100]
is use buffer1

2. Set SDBCR register to set the DMA transfer byte count
3. Set SDDSA register to set the DMA transfer starting address
4. Set DMARd bit of SDGCR register to active DMA
5. Polling DMARd bit of SDGCR register until it was cleared, or waiting DWrINT interrupt of SDISR

register

8.4.3 Move data from SDIO host controller buffer to SDRAM

1. Set RdSel bit of SDGCR register to select buffer for use. Set [000] is use buffer0, and set [100]
is use buffer1

2. Set SDBCR register to set the DMA transfer byte count
3. Set SDDSA register to set the DMA transfer starting address
4. Set DMAWr bit of SDGCR register to active DMA
5. Polling DMAWr bit of SDGCR register until it was cleared, or waiting DRdINT interrupt of SDISR

register

8.5 SD Host Interface

Please refer to “SD Memory Card Specifications Part 1” and “The Multimedia Card System
Specification” for the protocol and programming rule of SD memory card and MMC.

8.5.1 Send Command to SD/MMC Card

1. Set the argument to SDARG register.
2. Set command to CMD_CODE bit of SDCR register.
3. Set CO_EN bit of SDCR register to enable command output.
4. Polling CO_EN bit of SDCR register until it was cleared

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 107

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

8.5.2 Get Response from SD/MMC Card

1. Set RI_EN bit of SDICR register to enable response input.
2. Polling RI_EN bit of SDICR register until it was cleared
3. Check CRC-7 bit of SDIISR register. And then the response information was put at SDRSP0

and SDRPS1 register

8.5.3 SD/MMC to Buffer Access

1. Set WrSel bit of SDGCR register to select buffer for use. Set [011] is use buffer0, and set [111]
is use buffer1

2. Set SDBLEN register to 0x1FF. One block is 512 bytes. The value of this register should be
count+1.

3. Send READ_SINGLE_BLOCK command to the card
4. Set DI_EN bit of SDICR register to enable data input
5. Polling DI_EN bit of SDICR register until it was cleared, or waiting for DI_IS interrupt bit of

SDIISR register.
6. Check the CRC-16 bit of SDIISR register

8.5.4 Buffer to SD/MMC Access

1. Set RdSel bit ofSDGCR register to select buffer for use. Set [011] is use buffer0, and set [111]
is use buffer1

2. Send WRITE_LOCK command to the card
3. Set SDBLEN register to 0x1FF. The host will automatic add 1 to be the block size. One block

is 512 bytes
4. Set DO_EN bit of SDICR register to enable data output.
5. Polling DO_EN bit of SDICR register until it was cleared, or waiting for DO_IS interrupt bit of

SDISR register
6. Check the CRC bit of SDIISR register

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 108

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

9 LCD Controller
9.1.1 Overview

The main purpose of LCD Controller is used to display the video/OSD raw data to external
display device. It supports common packet RGB and packet YUV format raw data and can
connect to common TFT LCD, STN LCD, and TV-encoder.

The LCD Controller Block Diagram was shown in the Figure 9-1:

Figure 9-1 LCD Controller Block Diagram

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 109

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 110

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

The LCD Controller register map was shown in the Table 9-1:

Table 9-1 LCD Controller Register Map

Register Address R/W Description Reset Value
LCD Controller
LCDCON 0xFFF0.8000 R/W LCD Controller control register 0000.0000
LCD Interrupt Control
LCDINTENB 0xFFF0.8004 R/W Interrupt Mask Set/Clear Register 0000.0000
LCDINTS 0xFFF0.8008 R Masked Interrupt Status Register 0000.0000
LCDINTC 0xFFF0.800C W Interrupt Clear Register 0000.0000
LCD Pre-processing
OSDUPSCF 0xFFF0.8010 R/W OSD data Horizontal/Vertical up-scaling factor 0000.0000
VDUPSCF 0xFFF0.8014 R/W Video image Horizontal/Vertical up-scaling factor 0000.0000
OSDDNSCF 0xFFF0.8018 R/W OSD data Horizontal/Vertical down-scaling factor 0000.0000
VDDNSCF 0xFFF0.801C R/W Video image Horizontal/Vertical down-scaling factor 0000.0000
LCD FIFO Control
FIFOCON 0xFFF0.8020 R/W LCD FIFOs control register 0000.0000
FIFOSTATUS 0xFFF0.8024 R LCD FIFOs status 0000.0000
FIFO1PRM 0xFFF0.8028 R/W LCD FIFO1 parameters 0000.0000
FIFO2PRM 0xFFF0.802C R/W LCD FIFO2 parameters 0000.0000
FIFO1SADDR 0xFFF0.8030 R/W LCD FIFO1 transfer start address register 0000.0000
FIFO2SADDR 0xFFF0.8034 R/W LCD FIFO2 transfer start address register 0000.0000
FIFO1DREQCNT 0xFFF0.8038 R/W FIFO1 data request transfer count register 0000.0000
FIFO2DREQCNT 0xFFF0.803C R/W FIFO2 data request transfer count register 0000.0000
FIFO1CURADR 0xFFF0.8040 R FIFO1 current access address 0000.0000
FIFO2CURADR 0xFFF0.8044 R FIFO2 current access address 0000.0000
FIFO1RELACOLCNT 0xFFF0.8048 R/W FIFO 1 real column count register 0000.0000
FIFO2RELACOLCNT 0xFFF0.804C R/W FIFO 2 real column count register 0000.0000
Color Generation
LUTENTRY1 0xFFF0.8060 R/W TFT: lookup table entry index register 0000.0000
LUTENTRY2 0xFFF0.8064 R/W TFT: lookup table entry index register 0000.0000
LUTENTRY3 0xFFF0.8068 R/W TFT: lookup table entry index register 0000.0000
LUTENTRY4 0xFFF0.806C R/W TFT: lookup table entry index register 0000.0000
TMDDITHP1 0xFFF0.8070 R/W Gray level dithered data duty pattern 0101.0001
TMDDITHP2 0xFFF0.8074 R/W Gray level dithered data duty pattern 1111.0841
TMDDITHP3 0xFFF0.8078 R/W Gray level dithered data duty pattern 4949.2491
TMDDITHP4 0xFFF0.807C R/W Gray level dithered data duty pattern 5555.52A5
TMDDITHP5 0xFFF0.8080 R/W Gray level dithered data duty pattern B6B6.B556
TMDDITHP6 0xFFF0.8084 R/W Gray level dithered data duty pattern EEEE.DB6E
TMDDITHP7 0xFFF0.8088 R/W Gray level dithered data duty pattern FEFE.EFBE
LCD Post-processing
DDISPCP 0xFFF0.8090 R/W Dummy Display Color Pattern Register 0000.0000
DISPWINS 0xFFF0.8094 R/W Valid Display Window Starting Coordinate Register 0000.0000
DISPWINE 0xFFF0.8098 R/W Valid Display Window Ending Coordinate Register 0000.0000
OSDWINS 0xFFF0.809C R/W OSD Window Starting Coordinate Register 0000.0000
OSDWINE 0xFFF0.80A0 R/W OSD Window Ending Coordinate Register 0000.0000
OSDOVCN 0xFFF0.80A4 R/W OSD Overlay Control Register 0000.0000

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 111

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

OSDKYP 0xFFF0.80A8 R/W OSD Overlay Color-Key Pattern 0000.0000
OSDKYM 0xFFF0.80AC R/W OSD Overlay Color-Key Mask 0000.0000
LCD Timing Generation
LCDTCON1 0xFFF0.80B0 R/W LCD Timing Control Register1 0000.0000
LCDTCON2 0xFFF0.80B4 R/W LCD Timing Control Register2 0000.0000
LCDTCON3 0xFFF0.80B8 R/W LCD Timing Control Register3 0000.0000
LCDTCON4 0xFFF0.80BC R/W LCD Timing Control Register4 0000.0000
LCDTCON5 0xFFF0.80C0 R/W LCD Timing Control Register5 0000.0000
LCDTCON6 0xFFF0.80C4 R LCD Timing Control Register6 0000.0000
LCD SRAM Build In Self Test
BIST 0xFFF0.80D0 R/W LCD SRAM Build In Self Test Register 0000.0000
Look Up Table SRAM

0xFFF0.8100
…

0xFFF0.84FF
R/W

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 112

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

9.1.2 Programming Procedure

This section describes the software programming flow for LCD controller. Follow them to avoid
unpredictable condition. The overall programming flows are as Figure 9-2 and 9-3.

Figure 9-2 Overall programming flow for LCD controller - 1

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 113

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Initialization
(FIFOCON , LCDCON)

Start

Configure LCD Controller
(LCDCON)

Configure LCD Interrupt
(LCDINTENB , LCDINTC)

Use OSD
function?

Yes

Configure OSD function
(OSDOVCN , OSDKYP ,

OSDKYM)

Configure LCD Timing
Generatio

n
(LCDTCON 1, LCDTCON 2 ,
LCDTCON 3 , LCDTCON 4,
LCDTCON 5, LCDTCON 6)

No

Use STN
pane

l ?

Yes

Configure Gray level
dithered data duty

pattern
(TMDDITHP 1,

TMDDITHP 2, TMDDITHP 3,
TMDDITHP 4, TMDDITHP 5,
TMDDITHP 6 , TMDDITHP 7)

Yes

Use TFT panel
and LUT ?

Configure TFT Look - up
Tabl

e
(LUTENTY 1 , LUTENTY 2,
LUTENTY 3, LUTENTY 4,

0x100 H ~ 0x4FF)

No

No

Use Scaling
function ?

Configure Video / OSD
Scaling factor

(OSDUPSCF , VDUPSCF ,
OSDNSCF, VDDNSCF)

Yes

B

No

A

NO: W90P710 Programming Guide VERSION: 2.1 PAGE: 114

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed,
distributed or reproduced without permission from Winbond.
Table No.: 1200-0003-07-A

Figure 9-3 Overall programming flow for LCD controller - 2

B

Configure the starting address and
the stride of frame buffer and

FIFO
(FIFO1PRM , FIFO2PRM ,

F1 SADDR , F2 SADDR ,
F1 DREQCNT , F2 DREQCNT ,

F1 REALCULCNT ,
F2 REALCULCNT

Configure how to show image on
the panel

(DDISPCP , DISPWINS ,
DISPWINE , OSDWINS ,

OSDWINE)

Enable LCD Controller
(LCDCON)

Check running state and process
interrupt status

(FIFOSTATUS , LCDINTS)

Change
configuration ?

A

No

End

Is FIFO
disabled?

Enable FIFO
(FIFOCON)

Yes

Is LCD
disabled?

Yes

No

Yes

No

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 115

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

9.2 Initialization
Initialize the whole system environment and setup the interrupt service routine, and then
initialize the LCD Controller.
The programming procedure is as follows:
1) Configure global setting needed by LCDC, like as AIC, timer, and etc.
2) Setup LCD Controller and other needed interrupt service routine, and install to AIC interrupt

vector table.
3) Disable FIFO1 and FIFO2. (FIFOCON [1:0] = 00b)
4) Disable LCD Controller. (LCDCON [16] = 0)
5) Reset LCD Controller. (LCDCON [16] = 1)

9.3 Configure LCD Controller
The user can configure the common settings of this controller by programming register
LCDCON. Function of each field is explained as Table 9-2.

Table 9-2 Register LCDCON Bit Map

Register LCDCON
Bits Functions Descriptions
[25] LCD Pre-Processor Reset 0 = Disable, normal operation

1 = Only reset the LCD Pre-Processor, clear FIFO, AHB
protocol re-start.

[24] LCD Controller Reset(except
Control Registers)

0 = Disable, normal operation
1 = Reset the whole LCD Controller include LCD Timing
Generator

[20] Image stored in memory
device is YUV format or RGB
format

0 = RGB format
1 = YUV format
If this bit is set to 1, LCDBPP must be set to 101 (16bpp)

[19] OSD Data Fetch Control 0 = Disable
1 = Enable

[18] Look Up Table SRAM
Read/Write Enable

0 = Disable
1 = Enable

[17] Look Up Table Enable 0 = Disable
1 = Enable

[16] LCD Controller Enable 0 = Disable VSYNC, HSYNC, VCLK, VD, and VDEN
1 = Enable VSYNC, HSYNC, VCLK, VD, and VDEN

[13:12] YUV output sequence(only 00 = UYVY

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 116

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

used at TV-Encoder) 01 = YUYV
10 = VYUY
11 = YVYU

[11:10] LCD Line Data
Sequence(only used at
Sync-Type non High Color
TFT)

00 = First line data is RGB, second line data is GBR
01 = First line data is BGR, second line data is RBG
10 = First line data is GBR, second line data is RGB
11 = First line data is RBG, second line data is BGR

[9:8] Video Data output re-
map(Only used at Sync-type
High Color TFT)

00 = Databus is 24bit
01 = Databus is 18bit
10 = Databus is 8bit

[7] External TV encoder Enable 0 = Normal operation
1 = Convert RGB to YCbCr for external TV encoder

[6] Monochrome LCD has an 8-
bit interface

0 = mono LCD use 4-bit interface
1 = mono LCD uses 8-bit interface

[5] TFT Type Select 0 = Sync-type High Color TFT LCD
1 = Sync-type TFT LCD

[4] LCD is TFT 0 = LCD is an STN display
1 = LCD is a TFT display

[3] STN LCD is monochrome 0 = STN LCD is color
1 = STN LCD is monochrome

[2:0] LCD bits per pixel 011 = 8 bpp RGB332
101 = 16 bpp RGB565

LCDBPP means the resolution (Bit Per-Pixel) of the image data which stored in memory device.
If LUTEN is enabled, LCD Controller will output data from Palette SRAM for 8bpp image. Else,
LCD Controller will treat 8bpp data as RGB332. At normally, Video Databus output is RGB888,
24bit. The other bit will be replaced with zero. Please refer to GPIO chapter to configure this
register.

The programming procedure is listed as follows:
1) Decide that the type of input raw data is YUV or RGB (LCDCON [20]).
2) Decide that OSD is enabled or not (LCDCON [19]).
3) If external panel is TFT LCD, configure TFT-related bits (LCDCON [5:4] and LCDCON

[11:8]).
4) If look-up table is needed, configure LUT-related bits (LCDCON [18:17]).
5) Go to Step 9.
6) If external panel is TV, configure TV-related bits (LCDCON [7] and LCDCON [13:12]).

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 117

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

7) Go to Step 9.
8) If external panel is STN, configure STN-related bits (LCDCON [4:3]).
9) Configure the color depth according to the input raw data (LCDCON [2:0]).

9.4 Configure LCD Interrupt
There are enable register, clear register, status register for every interrupt type. Enable Mask
set/clear register will branch firmware into interrupt sub-routine. Firmware can read Status
register to identify which interrupt generate now. Write Clear register will clear the interrupt
status. Status register will be set even if firmware disable the Enable register. Main-routine can
read Status register and write Clear register.
HSYNC interrupt, FIFO2 VLINE FINISH interrupt, and FIFO1 VLINE FINISH interrupt are only
for debug. Don’t use these interrupts under normal environment.

The programming procedure is listed as follows:
1) Enable required interrupts. (LCDINTENB)
2) Clear the interrupts of all enabled ones for safety. (LCDINTC)

9.5 Configure LCD Timing Generation
Each panel needs the timing waveform it required. After enabling LCD Controller, it can
generate timing waveform, which is specified with these registers. Before programming these
registers, programmer must make sure what panel you use and find out the requirements of
timing waveform from panel specification.

The programming procedure is listed as follows:
1) Configure LCD Timing Generation Register. (LCDTCON1, LCDTCON2, LCDTCON3,

LCDTCON4, LCDTCON5, and LCDTCON6)

9.6 Configure OSD function
The relationship between screen, valid window, and OSD window is as Figure 9-4.

Figure 9-4 The relationship between screen, valid window, and OSD window

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 118

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Lin
e Per-

Pan
el

OSDWS

OSDWE

DISPWEOSD
window

Video
windowDummy color

DISPW
Pixel Per-Line

The OSD data can be transparent, blinking or mixed with video data by setting overlay control
register. The display condition is depicted in the following table:

Table 9-3 OSD Display Condition

OSDEN Color-Key OCR1 OCR0 Display
0 X X X Video
1 0 (unmatch) X 0 Video
1 0 (unmatch) X 1 OSD
1 0 (unmatch) X 2 Video+OSD
1 1 (match) 0 X Video
1 1 (match) 1 X OSD
1 1 (match) 2 X Video+OSD

The Color-Key value indicates the color-key condition match or un-match. The OSD color-key
pattern is defined in register OSDKYP for RGB components according to the source color

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 119

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

format. The color-key mask is also provided in registers OSDKYM. Only the color-key pattern
with the mask bits set to 1 will be compared with the OSD graph data.
Setting the value of register VASYNW can change the weighting of mixing the data of video and
OSD streams. In addition, the OSD can be periodically blinking by setting the blinking cycle time
in register BLICNT.
The programming procedure is as follows:
1) Fill Overlay Color Key Pattern and Overlay Color Key Mask (OSDKYP and OSDKYM).
2) Decide Video Synthesis Weighting (OSDOVCN [6:4])
3) Configure Video/OSD overlay control 0 and 1 (OSDOVCN [3:0]).
4) Enable Color Key Control (OSDOVCN [8]).
5) If blinking function is desired, Configure Blinking Control and Blinking Cycle Time

(OSDOVCN [9] and OSDOVCN [23:16]).

9.7 Configure TFT Palette Look-up Table
The input raw data with less than 8-bit color can be converted to the output raw data with more
than 12-bit color through TFT Palette Look-up Table. LCD Controller supports 8bpp palette color
look-up. The details are as Table 9-4.

Table 9-4 entry of the TFT Look-up table

BIT NAME DESCRIPTION

31:24 Reserved
23:16 R[7:0] Red Palette data
15:8 G[7:0] Green Palette data
7:0 B[7:0] Blue Palette data

The programming procedure is listed as follows:
1) Decide which entries of LUT are addressable (LUTENTRY1, LUTENTRY2,

LUTENTRY3, and LUTENTRY4).
2) Fill color data into those addressable entries of LUT (address from 0xFFF0_8100 to

0xFFF0_84FF).

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 120

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

9.8 Configure Gray level dithered data duty pattern
Gray level dithered data duty pattern is only used when the external panel is STN LCD. When
LCD controller connects a STN LCD, a set of suitable dithering pattern must be chosen. If not,
images shown on the panel may be flicking and not good.

Table 9-5 STN 16-leve gray number & relative Time-based dithering

Frame
No
Duty
Cycle

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Probabil
ity

9/16 7/16 8/16 7/16 8/17 7/16 8/16 7/16 8/16 7/16 8/16 7/16 8/16 7/16 8/16 7/16

Symbol “ ” instead of pixel turn-on, other is turn-off.

The programming procedure is listed as follows:
1) Program the set of dithering pattern prepared in advance to the registers of dithering pattern

(TMDDITHP1, TMDDITHP2, TMDDITHP3, TMDDITHP4, TMDDITHP5, TMDDITHP6, and
TMDDITHP7).

9.9 Configure Video/ OSD scaling factor

The LCD Controller is able to scale up or down the input raw data and then output to the panel.
Up-scaling function supports enlarging 2 or 4 times in vertical direction and 2 or 4 times in

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 121

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

horizontal direction. Down-scaling function supports shrinking to
M
N ratio in vertical direction

and shrinking to
2
1 ,

4
1 , and

8
1 ratio in horizontal direction. N and M both range from 1 to 255 and

N must be smaller than M.
Up-Scaling and Down-Scaling functions can’t be enable simultaneously to avoid unpredictable
behavior.

The programming procedure is listed as follows:
1) If the Video up-scaling function is required, configure register Video Up-scaling Factor

(VDUPSCF).
2) If the OSD up-scaling function is required, configure register OSD Up-scaling Factor

(OSDUPSCF).
3) Go to Step 6.
4) If the Video down-scaling function is required, configure register Video Down-scaling Factor

(VDDNSCF).
5) If the OSD down-scaling function is required, configure register OSD Down-scaling Factor

(OSDNSCF).
6) Finish configurations.

9.10 Configure the starting address and the stride of frame buffer and FIFO
If there is an image with size 480*480, 24bpp, stored in memory device with starting address is
0x30000000. 24bpp means there are 4 bytes per pixel (real color 3 bytes and dummy data 1
byte). So:
 FIFO1SADDR = 0x30000000
 FIFO1COLCNT = 0x01E0
 FIFO1ROWCNT = 0x01E0
 FIFO1REALCOLCNT = 0x01E0
The unit of FIFOCOLCNT is word. So, if the image is 16bpp, FIFO1COLCNT and
FIFO1REALCOLCNT are modified to 0x00F0 because under 16bpp mode, a word contains two
pixel data. When FIFO received the number of data which FIFOCOLCNT specified,
VLINEFINSH interrupt is generated and

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 122

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Row counter will increase 1. When row counter received the number of column which
FIFOROWCNT specified, VFRAMFINSH interrupt is generated. So, FIFOROWCNT have no
concern with BPP.
FIFOSTRIDE will be load in and add to current accessing address
Column counter counts the FIFO writing pulse. If Horizontal Up-Scaling factor is 2X, FIFO will
extract a pixel data to two pixel data internal. So if Horizontal Up-Scaling function is enabled,
FIFOCOLCNT need to divided again or VLINEFINSH interrupt will generated after FIFO have
received two column data and FIFOROWCNT and VFRAMFINSH interrupt will be influenced too.
The same with Horizontal Down-Scaling function, so it’s recommend that Horizontal Down-
Scaling Factor M is a multiple of 4. When VFRAMEFINSH interrupt generated, FIFO will fetch
image data re-start at FIFO1SADDR.

Figure 9-5 An example to explain how to program the starting address and stride

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 123

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

2. 120 pixels

480 pixels

480 pixels

3. 240 pixels

1. 60 pixels

If there is an image with size 480*480, 24bpp, stored in memory device with starting address is
0x30000000, and connected with a 480*480 LCD Panel, and user wants to show whole image
on LCD Panel, the setting of register is:
 FIFO1SADDR = 0x30000000
 FIFO1COLCNT = 0x01E0
 FIFO1ROWCNT = 0x01E0
 FIFO1REALCOLCNT = 0x01E0

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 124

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

If the LCD Controller connected with a 240*240 LCD Panel or user only wants to show a part
(red line region, 240*240) of the whole image on a 480*480 LCD Panel, the setting of register is:

FIFO1SADDR = 0x3001C3E0 (0x30000000 + 4*(480*60+120) =
0x3001C3E0)

 FIFO1COLCNT = 0x00F0
 FIFO1ROWCNT = 0x00F0
 FIFOSTRIDE = 0x03C0 (240*4 = 0x03C0)
 FIFO1REALCOLCNT = 0x00F0
After setting register complete, enable FIFO and then FIFO will fetch the image data according
to the register value. In additional, if the image in FIFO is small than the LCD Panel, DISPWYS,
DISPWXS, DISPWYE, DISPWXE (see page) must be configured.
Usually, FIFO Real Column Count is the same with FIFO Column Count. But if horizontal down-
scaling function is enabled (factor M is not equal with N), FIFO Real Column Count specify the
column count of original image, and FIFO Column Count specify the column count of the scaled
image.

The programming procedure is as follows:
1) Configure the starting address, parameters, and data count of FIFO1 (FIFO1SADDR,

FIFO1PRM, and F1DREQCNT).
2) If Up-scaling function is enabled, configure the real column count of FIFO1

(F1REALCULCNT)
3) If OSD control is enabled, configure the starting address, parameters, and data count of

FIFO2 (FIFO2SADDR, FIFO2PRM, and F2DREQCNT).
4) If OSD control and Up-scaling function are enabled, configure the real column count of

FIFO2 (F2REALCULCNT)

9.11 Configure how to show image on the panel
When an image is displayed on a panel, some different effects can be presented. For instance,
LCD can only show some portion of a whole image with cropping window and valid window
provided by the controller.

The programming procedure is as follows:

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 125

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

1) Configure Dummy Display Color Pattern (DDISPCP).
2) Configure the starting coordinate and ending coordinate of valid display window (DISPWINS

and DISPWINE).
3) If OSD function is enabled, configure the starting coordinate and ending coordinate of OSD

valid display window (OSDWINS and OSDWINE).

9.12 Enable FIFO
It contains two 16 words FIFO. When LCD FIFO is enabled and there are no data in FIFO, LCD
FIFO will generate a request to LCD Arbiter. After FIFO is full of data, LCD FIFO will output data
to LCD Color Generator for display on LCD. LCD FIFO 1 is for Video Display, almost all function
needs it. LCD FIFO 2 is for OSD function.

Pixel data stored in memory with different color depth are shown as Table X-Y ~ Table X-Y.

(1) 16bpp Display

Table 9-6 BSWP=0, HSWP=0

 D[31:16] D[15:0]
0000H Pixel 2 Pixel 1
0004H Pixel 4 Pixel 3
0008H Pixel 6 Pixel 5
……….

Table 9-7 BSWP=0, HSWP=1

 D[31:16] D[15:0]
0000H Pixel 1 Pixel 2
0004H Pixel 3 Pixel 4
0008H Pixel 5 Pixel 6
……….

(2) 8bpp Display

Table 9-8 BSWP=0, HSWP=0

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 126

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

 D[31:24] P[23:16] P[15:8] D[7:0]
0000H Pixel 4 Pixel 3 Pixel 2 Pixel 1
0004H Pixel 8 Pixel 7 Pixel 6 Pixel 5
0008H Pixel 12 Pixel 11 Pixel 10 Pixel 9
……….

Table 9-9 BSWP=1, HSWP=0

 D[31:24] P[23:16] P[15:8] D[7:0]
0000H Pixel 1 Pixel 2 Pixel 3 Pixel 4
0004H Pixel 5 Pixel 6 Pixel 7 Pixel 8
0008H Pixel 9 Pixel 10 Pixel 11 Pixel 12
……….

The programming procedure is listed as follows:
1) If the input video or OSD raw data is swap format, set the swap control bits (FIFOCON

[19:16])
2) If only video data is inputted, enable FIFO1 (FIFOCON [0]); if video and OSD raw data are

both inputted, enable FIFO1 and FIFO2 (FIFOCON [1:0]).

9.13 Enable LCD Controller
After finishing the above configurations, the last step is enabling the Controller to run.

The programming procedure is listed as follows:
1) Enable the Controller (LCDCON [16]).

9.14 Check running state and process interrupt status
While LCD Controller is running it continuously generates interrupts, which are enabled before
Controller runs. Program must have an interrupt service routine (ISR) to process these occurred
interrupts.

The programming procedure is listed as follows:
1) Some interrupts occur and enter ISR.
2) Check which interrupts occur through interrupts status register (LCDINTS [18:16] and

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 127

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

LCDINTS [5:0]).
3) Set the flags and clear the occurred interrupts (LCDINTC [18:16] and LCDINTC

[5:0]).
4) Return to normal routine.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 128

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

10 Audio Controller

10.1 Overview

The audio controller consists of IIS/AC-link protocol to interface with external audio CODEC.

One 8-level deep FIFO for read path and write path and each level has 32-bit width (16 bits for right
channel and 16 bits for left channel). One DMA controller handle the data movement between FIFO and
memory.

The following are the property of the DMA.

 Always 8-beat incrementing burst

 Always bus lock when 8-beat incrementing burst

 When reach middle and end address of destination address, a DMA_IRQ is requested to CPU
automatically

An AHB master port and an AHB slave port are offered in audio controller.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 129

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

10.2 Block Diagram
Figure 10-1 Block diagram of Audio Controlle

AHB Bus Master AHB Bus
Slave

PLAY
FIFO

Record
FIFO

PFIFO
Control

MUX

RFIFO
Control

AHB Bus Interface

AC-LINKIIS

Audio Interface

DMA
Controller Control

Register

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 130

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

10.3 Registers
R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written
Register Address R/W Description Reset Value

ACTL_CON 0xFFF0.9000 R/W Audio controller control register 0x0000.0000
ACTL_RESET 0xFFF0.9004 R/W Sub block reset control register 0x0000.0000

ACTL_RDSTB 0xFFF0.9008 R/W DMA destination base address register for
record 0x0000.0000

ACTL_RDST_LENGTH 0xFFF0.900C R/W DMA destination length register for record 0x0000.0000

ACTL_RDSTC 0xFFF0.9010 R DMA destination current address register for
record 0x0000.0000

ACTL_RSR 0xFFF0.9014 R/W Record status register 0x0000.0000

ACTL_PDSTB 0xFFF0.9018 R/W DMA destination base address register for
play 0x0000.0000

ACTL_PDST_LENGTH 0xFFF0.901C R/W DMA destination length register for play 0x0000.0000

ACTL_PDSTC 0xFFF0.9020 R DMA destination current address register for
play 0x0000.0000

ACTL_PSR 0xFFF0.9024 R/W Play status register 0x0000.0004
ACTL_IISCON 0xFFF0.9028 R/W IIS control register 0x0000.0000
ACTL_ACCON 0xFFF0.902C R/W AC-link control register 0x0000.0000
ACTL_ACOS0 0xFFF0.9030 R/W AC-link out slot 0 0x0000.0000
ACTL_ACOS1 0xFFF0.9034 R/W AC-link out slot 1 0x0000.0080
ACTL_ACOS2 0xFFF0.9038 R/W AC-link out slot 2 0x0000.0000
ACTL_ACIS0 0xFFF0.903C R AC-link in slot 0 0x0000.0000
ACTL_ACIS1 0xFFF0.9040 R AC-link in slot 1 0x0000.0000
ACTL_ACIS2 0xFFF0.9044 R AC-link in slot 2 0x0000.0000

10.4 AC97 Interface

W90P710 AC-link interface partially support the functionality defined by AC97 codec standard.
W90P710 AC-link interface supports only 4 data slots of the 12 data slots. It supports 16-bits PCM.
Double rate (96kHz) was not supported. Basically, it provides 2-channels playback and 2-channels
record with variable sampling rate, 8000, 11025, 16000, 22025, 24000, 32000, 44100, and 48000 Hz.

W90P710 AC-link interface provides facilities of external AC97 codec register accessing. The
playback and record data transfer is done by DMA transfer. These facilities greatly reduce the loading
of software.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 131

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

For input and output direction, each AC-link frame contains a Tag slot and 12 data slots. However,
in the 12 data slots, only 4 slots are used in W90P710, other 8 slots are not supported, and the
control data and audio data are transferred in the 4 valid slots. Each slot contains 20 bits data.

The structure of output frame is shown as below:

Table 10-1 AC97 Output Frame

Slot # 0 1 2 3 4 5 6 7 8 9 10 11 12
Content Tag CMD

ADDR
CMD
DATA

PCM
LEFT

PCM
RIGHT

-- -- -- -- -- -- -- --

Bits 15-0 19-0 19-0 19-0 19-0

Phase Tag
phase

Data phase

The output frame data format is shown as following:

Table 10-2 AC97 Output Frame Data Format

Tag
(slot 0)

Bit 15: frame validity bit, 1 is valid, 0 is invalid.
Bits 14-3: slot validity, but in W99702, only bits 6-3 are used, bits 14-7 are unused. Bit 3 is
corresponding to slot 1; bit 4 is corresponding to slot 2, etc. 1 is valid, 0 is invalid. The
unused bits 14-7 should be cleared to 0.
Bits 2-0 should be cleared to 0.

CMD
ADDR
(Slot 1)

Bit 19: read/write control, 1 for read and 0 for write
Bit 18-12: control register address
Bit 11-0 should be cleared to 0

CMD
DATA
(Slot 2)

Bit 19-4: Control register write data. It should be cleared to 0 if current operation is read)
Bit 3-0 should be cleared to 0

PCM
LEFT
(Slot 3)

Bit 19-4: PCM playback data for left channel
Bit 3-0 should be cleared to 0

PCM
RIGHT
(Slot 4)

Bit 19-4: PCM playback data for right channel
Bit 3-0: should be cleared to 0

The structure of input frame is shown as below:

Table 10-3 AC97 Input Frame

Slot # 0 1 2 3 4 5 6 7 8 9 10 11 12
Content Tag Status

ADDR
Status
DATA

PCM
LEFT

PCM
RIGHT

-- -- -- -- -- -- -- --

Bits 0-15 19-0 19-0 19-0 19-0

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 132

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

The input frame data format is shown as following:

Table 10-4 AC97 Input Frame Data Format

Tag
(slot 0)

Bit 15: frame validity bit, 1 is valid, 0 is invalid.
Bits 14-3: slot validity, but in W99702, only bits 6-3 are used, bits 14-7 are unused. Bit 3 is
corresponding to slot 1; bit 4 is corresponding to slot 2, etc. 1 is valid, 0 is invalid. The
unused bits 14-7 should be cleared to 0.
Bits 2-0 should be cleared to 0.

Status
ADDR
(Slot 1)

Bit 19 should be cleared to 0
Bit 18-12: control register address which previous frame requested
Bit 11: PCM data for left channel request, it should be always 0 when VRA=0 (VRA:
Variable Rate Audio mode)
Bit 10: PCM data for right channel request
Bit 9-0 should be cleared to 0

Status
DATA
(Slot 2)

Bit 19-4: Control register read data which previous frame requested. It should be cleared
to 0 if this slot is invalid)
Bit 3-0 should be cleared to 0

PCM
LEFT
(Slot 3)

Bit 19-4: PCM record data for left channel
Bit 3-0 should be cleared to 0

PCM
RIGHT
(Slot 4)

Bit 19-4: PCM record data for right channel
Bit 3-0: should be cleared to 0

10.4.1 Cold Reset External AC97 Codec

To reset external AC97 codec, please follow the steps below:

1. Set the AC_C_RES bit of ACTL_ACCON register for 10ms, and then clear it.

2. Check the CODEC_READY bit of ACTL_ACIS0 register. If CODEC_READY was set,
the reset operation successes.

10.4.2 Read AC97 Registers

To read registers of external AC97 codec, please follow the steps below:

1. Set R_WB bit of ACTL_ACOS1 register, and write the register index of AC97 codec
register to be read to R_INDEX[6:0] of ACTL_ACOS1 register.

2. Set VALID_FRAME and SLOT_VALID[0] bits of ACTL_ACOS0 register. The register
index will be delivered by slot1

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 133

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

3. Polling the AC_R_FINISH bit of ACTL_ACCON register until it was set or time-out

4. If time-out occurred, the external AC97 codec may not be ready or W90P710 hardware
failure

5. Clear ACTL_ACOS0 register

6. Read R_INDEX[6:0] of ACTL_ACIS1 register. This echo value must be equal to the
value written to ACTL_ACOS1. If the echo value was not correct, check the hardware.

7. Read AC97 register value from RD[15:0] of ACTL_ACIS2 register

A sample code is given below:
static UINT16 ac97_read_register(INT nIdx)
{
 volatile INT nWait;

 /* set the R_WB bit and write register index */
 writew(REG_ACTL_ACOS1, 0x80 | nIdx);

 /* set the valid frame bit and valid slots */
 writew(REG_ACTL_ACOS0, 0x11);

 Delay(100);

 /* polling the AC_R_FINISH */
 for (nWait = 0; nWait < 0x10000; nWait++)
 if (readw(REG_ACTL_ACCON) & AC_R_FINISH)
 break;

 if (nWait == 0x10000)
 _error_msg("ac97_read_register time out!\n");

 writew(REG_ACTL_ACOS0, 0);

 if (readw(REG_ACTL_ACIS1) >> 2 != nIdx)
 _debug_msg("ac97_read_register - R_INDEX of REG_ACTL_ACIS1 not match!,
0x%x\n", readw(REG_ACTL_ACIS1));

 Delay(100);
 return (readw(REG_ACTL_ACIS2) & 0xFFFF);

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 134

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

}

10.4.3 Write AC97 Registers

To write to registers of external AC97 codec, please follow the steps below:

1. Clear R_WB bit of ACTL_ACOS1 register, and write the register index of AC97 codec
register to be written to R_INDEX[6:0] of ACTL_ACOS1 register.

2. Write register setting value to WD[15:0] of ACTL_ACOS2 register.

3. Set VALID_FRAME, SLOT_VALID[0], and SLOT_VALID[1] bits of ACTL_ACOS0
register. The register index will be delivered by slot1, and setting value will be delivered
by slot2.

4. Polling the AC_W_FINISH bit of ACTL_ACCON register until it was cleared or time-out

5. Read R_INDEX[6:0] of ACTL_ACIS1 register. This echo value must be equal to the
value written to ACTL_ACOS1

6. The register value should have been written to AC97 codec. Read back AC97 register to
verify

A sample is given below:
static INT ac97_write_register(INT nIdx, UINT16 sValue)
{
 volatile INT nWait;

 /* clear the R_WB bit and write register index */
 writew(REG_ACTL_ACOS1, nIdx);

 /* write register value */
 writew(REG_ACTL_ACOS2, sValue);

 /* set the valid frame bit and valid slots */
 writew(REG_ACTL_ACOS0, 0x13);

 Delay(100);
 /* polling the AC_W_FINISH */
 for (nWait = 0; nWait < 0x10000; nWait++)

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 135

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

 if (!(readw(REG_ACTL_ACCON) & AC_W_FINISH))
 break;

 writew(REG_ACTL_ACOS0, 0);

 if (ac97_read_register(nIdx) != sValue)
 _debug_msg("ac97_write_register, nIdx=0x%x, mismatch, 0x%x must be
0x%x\n", nIdx, ac97_read_register(nIdx), sValue);

 return 0;
}

10.4.4 AC97 Playback

W90P710 audio controller provides DMA function for transferring PCM data from main memory to
external AC97 codec. It supports single-channel or 2 channels transfer. The data arrangement in
playback DMA buffer was shown in the following figure:

Figure 10-2 AC97 Playback Data in DMA Buffer

 DMA buffer (2 channels)

0x10000 Left channel – LSB byte

0x10001 Left channel – MSB byte

0x10002 Right channel – LSB byte

0x10003 Right channel – MSB byte

0x10004 Left channel – LSB byte

0x10005 Left channel – MSB byte

0x10006 Right channel – LSB byte

0x10007 Right channel – MSB byte

… …

 DMA buffer (1 channel)

0x10000 Left channel – LSB byte

0x10001 Left channel – MSB byte

0x10002 Left channel – LSB byte

0x10003 Left channel – MSB byte

0x10004 Left channel – LSB byte

0x10005 Left channel – MSB byte

0x10006 Left channel – LSB byte

0x10007 Left channel – MSB byte

… …

To playback PCM data to external AC97 codec, please follow the steps below:

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 136

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

1. Set the IIS_AC_PIN_SEL, AUDIO_EN, AUDCLK_EN, ACLINK_EN, PFIFO_EN,
T_DMA_IRQ, and DMA_EN bits of ACTL_ACCON (IIS_AC_PIN_SEL: select I2S or
AC97, AUDIO_EN: enable W90P710 audio controller, ACLINK_EN: enable W99P710
AC-link interface, PFIFO_EN: enable playback FIFO, T_DMA_IRQ: enable transmit DMA
complete IRQ, and DMA_EN: enable DMA transfer)

2. If left and right channels data want to be played, write 0x3 to PLAY_SINGLE[1:0] of
ACTL_RESET register. If left channel only data want to be played, write 0x1 to
PLAY_SINGLE[1:0] of ACTL_RESET register. If right channel only data wants to be
played, write 0x2 to PLAY_SINGLE[1:0] of ACTL_RESET register

3. Pull ACTL_RESET_BIT bit of ACTL_RESET register high for 10ms to reset W90P710
audio controller. And pull AC_RESET bit of ACTL_RESET register high for 10ms to
reset W90P710 AC97 interface.

4. Reset the external AC97 codec.

5. Install interrupt service routine and enable W90P710 audio controller play interrupt. The
play IRQ number is 6.

6. Program AC97 codec playback sampling rate. (refer to AC97 specification)

7. Allocate memory for playback DMA buffer, its base address must be 4 bytes aligned.

8. Write base address of playback DMA buffer to ACTL_PDSTB register with bit 31 set
(indicates it is non-cacheable region), and write the DMA buffer length to
ACTL_PDST_LENGTH register

9. Fill DMA buffer with PCM data to be played and then set AC_PLAY bit of ACTL_RESET
register to start playback

10. In playback ISR, check ACTL_PSR register. If P_DMA_MIDDLE_IRQ bit was set, fill
PCM data to the first half of DMA buffer. Otherwise, if P_DMA_END_IRQ bit was set, fill
PCM data to the second half of DMA buffer

11. After all PCM data has been played, clear the AC_PLAY bit of ACTL_RESET register to
stop playback

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 137

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

10.4.5 AC97 Record

W90P710 audio controller provides DMA function for transferring PCM data from external AC97
codec to main memory. It supports single-channel or 2 channels transfer. The data arrangement in
record DMA buffer was shown in the following Figure:

Figure 10-3 AC97 Data in Record DMA buffer

 DMA buffer (2 channels)

0x10000 Left channel – LSB byte

0x10001 Left channel – MSB byte

0x10002 Right channel – LSB byte

0x10003 Right channel – MSB byte

0x10004 Left channel – LSB byte

0x10005 Left channel – MSB byte

0x10006 Right channel – LSB byte

0x10007 Right channel – MSB byte

… …

 DMA buffer (1 channel)

0x10000 Left channel – LSB byte

0x10001 Left channel – MSB byte

0x10002 Left channel – LSB byte

0x10003 Left channel – MSB byte

0x10004 Left channel – LSB byte

0x10005 Left channel – MSB byte

0x10006 Left channel – LSB byte

0x10007 Left channel – MSB byte

… …

To record PCM data from external AC97 codec, please follow the steps below:

1. Set the IIS_AC_PIN_SEL, AUDIO_EN, AUDCLK_EN, ACLINK_EN, RFIFO_EN,
R_DMA_IRQ, and DMA_EN bits of ACTL_ACCON register.

2. If both left and right channels audio data want to be recorded, write 0x3 to
RECORD_SINGLE[1:0] of ACTL_RESET register. If left channel only wants to be
recorded, write 0x1 to RECORD _SINGLE[1:0] of ACTL_RESET register. If right channel
only wants to be recorded, write 0x2 to RECORD _SINGLE[1:0] of ACTL_RESET
register.

3. Pull ACTL_RESET_BIT bit of ACTL_RESET register high for 10ms to reset W90P710
audio controller. And pull AC_RESET bit of ACTL_RESET register high for 10ms to
reset W90P710 AC97 interface.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 138

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

4. Reset the external AC97 codec.

5. Install interrupt service routine and enable W90P710 audio controller record interrupt.
The record IRQ number is 6.

6. Program AC97 codec record sampling rate. (refer to AC97 specification)

7. Allocate memory for record DMA buffer, whose base address must be 4 bytes aligned.

8. Write base address of record DMA buffer to ACTL_RDSTB register with bit 31 set
(indicates non-cacheable memory area), and write the DMA buffer length to
ACTL_RDST_LENGTH register

9. Set AC_RECORD bit of ACTL_RESET register to start recording.

10. In record ISR, check ACTL_RSR register. If R_DMA_MIDDLE_IRQ bit was set, read
PCM data from the first half of record DMA buffer. Otherwise, if R_DMA_END_IRQ bit
was set, read PCM data from the second half of record DMA buffer.

Once enough PCM data has been gathered, and recording wants to be stopped, just clear the
AC_RECORD bit of ACTL_RESET register to stop recording.

10.5 I2S Interface

W90P710 IIS interface entirely support the functionality defined by I2S codec standard.
W90P710 I2S interface supports 16 bits I2S and MSB-justified format. It supports 16-bits PCM.
Basically, it provides 2-channels playback and 2-channels record with variable sampling rate, 8000,
11025, 12000, 16000, 22025, 24000, 32000, 44100, and 48000 Hz. Even double rate (96kHz or
88.2Khz) are supported.

W90P710 I2S interface dose not provides facilities of external I2S codec register accessing. It

should be accessed by the serial interface (such as L3 in Philips codec) through W90P710 GPIO pin.
The playback and record data transfer are done by DMA transfer. These facilities greatly reduce the
loading of software.

10.5.1 I2S Play

W90P710 audio controller provides DMA function for transferring PCM data from main memory to
external I2S codec. It supports single-channel or 2 channels transfer. It should set base and address

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 139

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

by programming register AUDIO_PDESB and ACTL_PDES_LENGTH. The data arrangement in
playback DMA buffer was shown in the following figure:

Figure 10-4 I2S Play Data in DMA buffer

Base ADDR. DMA buffer (2 channels)

0x10000 Left channel – LSB byte

0x10001 Left channel – MSB byte

0x10002 Right channel – LSB byte

0x10003 Right channel – MSB byte

0x10004 Left channel – LSB byte

0x10005 Left channel – MSB byte

0x10006 Right channel – LSB byte

0x10007 Right channel – MSB byte

… …

 DMA buffer (1 channel)

0x10000 Left channel – LSB byte

0x10001 Left channel – MSB byte

0x10002 Left channel – LSB byte

0x10003 Left channel – MSB byte

0x10004 Left channel – LSB byte

0x10005 Left channel – MSB byte

0x10006 Left channel – LSB byte

0x10007 Left channel – MSB byte

… …

Note: The DMA buffer is double buffering. It will trigger an interrupt when half-length of the DMA
buffer is played.

To playback PCM data by external I2S codec, please follow the steps below:

1. Initial the L3 interface through three GPIO pin to control the external audio CODEC.
Including turn on the DAC and set the volume.

2. Set the bit IIS_RESET of ACTL_RESET to reset IIS
3. Set the bits AUDCLK_EN to enable the audio controller clock, PFIFO_EN to enable the

playback FIFO, DMA_EN to enable DMA, the BLOCK_EN[0] to enable IIS interface, and
AUDIO_EN to enable the audio controller. These bits are all in the register ACTL_CON.

4. Set the register ACTL_IISCON to set the sampling rate. And set the sampling rate of the
external codec through L3 interface.

5. Set the bit [3] ACTL_IISCON to determine the data format. And set the data format of
external codec through L3 interface. One is IIS compatible format; another is MSB-
justified format.

Length

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 140

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

6. Set the register ACTL_PDSTB and ACTL_PDST_LENGTH to set the DMA play
destination base address and the DMA play buffer length.

7. Set the register ACTL_RESET to set channel and start to play.

10.5.2 I2S Record

W90P710 audio controller provides DMA function for transferring PCM data from external I2S
codec to main memory. It supports single-channel or 2 channels transfer. It should set base and
address by programming register AUDIO_RDESB and ACTL_RDES_LENGTH. The data
arrangement in record DMA buffer was shown in the following figure:

Figure 10-5 I2S Record Data in DMA buffer

Base ADDR. DMA buffer (2 channels)

0x10000 Left channel – LSB byte

0x10001 Left channel – MSB byte

0x10002 Right channel – LSB byte

0x10003 Right channel – MSB byte

0x10004 Left channel – LSB byte

0x10005 Left channel – MSB byte

0x10006 Right channel – LSB byte

0x10007 Right channel – MSB byte

… …

 DMA buffer (1 channel)

0x10000 Left channel – LSB byte

0x10001 Left channel – MSB byte

0x10002 Left channel – LSB byte

0x10003 Left channel – MSB byte

0x10004 Left channel – LSB byte

0x10005 Left channel – MSB byte

0x10006 Left channel – LSB byte

0x10007 Left channel – MSB byte

… …

Note: The DMA buffer is double buffering. It will trigger an interrupt when half-length of the DMA
buffer is recorded.

To playback PCM data by external I2S codec, please follow the steps below:

1. Initial the L3 interface through three GPIO pin to control the external audio CODEC.
Including turn on the ADC and set the volume.

2. Set the bit IIS_RESET of ACTL_RESET to reset IIS
3. Set the bits AUDCLK_EN to enable the audio controller clock, RFIFO_EN to enable the

record FIFO, DMA_EN to enable DMA, the BLOCK_EN[0] to enable IIS interface, and
AUDIO_EN to enable the audio controller. These bits are all in the register ACTL_CON.

Length

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 141

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

4. Set the register ACTL_IISCON to set the sampling rate. And set the sampling rate of the
external codec through L3 interface.

5. Set the bit [3] ACTL_IISCON to determine the data format. And set the data format of
external codec through L3. W99P710 support two formats of IIS. One is IIS compatible
format another is MSB-justified format.

6. Set the register ACTL_RDSTB and ACTL_RDST_LENGTH to set the DMA record
destination base address and the DMA record buffer length.

7. Set the register ACTL_RESET to set channel and start to record. Then play the sound,
which record before and verify it.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 142

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

11 UART

11.1 Overview

Universal Asynchronous Receiver/Transmitter (UART) performs a serial-to-parallel conversion for
the input data. The character bits received from UART receive pin (SIN) are shifted to Receive FIFO
one after by one. The driver reads the receive FIFO to get the input character. The UART also
performs a parallel-to-serial conversion for output data. The driver writes the output characters to the
transmitter FIFO. Then the character bits are shifted to UART transmit pin (SOUT) in sequence.

The UART provides control/status registers and an interrupt for device driver to control the
transmitting operation, receiving operation and error handling. There are five types of interrupts
including line status interrupt, transmitter FIFO empty interrupt, receiver threshold level reaching
interrupt, time out interrupt, and MODEM status interrupt. The provided status information includes
the type and condition of the transfer operations being performed by the UART, as well as any found
error conditions (parity, overrun, framing, or break interrupt).

W90P710’s Asynchronous serial communication block include 4 UART blocks and accessary
logic. The feature of each UART could be found in datasheet.

11.2 Registers

R : read only, W : write only, R/W : both read and write, C : Only value 0 can be written

Register Address R/W Description and Condition Reset value

UART0

UART0_RBR 0xFFF8.0000 R Receive Buffer Register (DLAB = 0) Undefined

UART0_THR 0xFFF8.0000 W Transmit Holding Register (DLAB = 0) Undefined

UART0_IER 0xFFF8.0004 R/W Interrupt Enable Register (DLAB = 0) 0x0000.0000

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 143

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

UART0_DLL 0xFFF8.0000 R/W Divisor Latch Register (LS) (DLAB = 1) 0x0000.0000

UART0_DLM 0xFFF8.0004 R/W Divisor Latch Register (MS) (DLAB = 1) 0x0000.0000

UART0_IIR 0xFFF8.0008 R Interrupt Identification Register 0x8181.8181

UART0_FCR 0xFFF8.0008 W FIFO Control Register Undefined

UART0_LCR 0xFFF8.000C R/W Line Control Register 0x0000.0000

Reserved 0xFFF8.0010

UART0_LSR 0xFFF8.0014 R Line Status Register 0x6060.6060

Reserved 0xFFF8.0018

UART0_TOR 0xFFF8.001C R/W Time Out Register 0x0000.0000

UART1

UART1_RBR 0xFFF8.0100 R Receive Buffer Register (DLAB = 0) Undefined

UART1_THR 0xFFF8.0100 W Transmit Holding Register (DLAB = 0) Undefined

UART1_IER 0xFFF8.0104 R/W Interrupt Enable Register (DLAB = 0) 0x0000.0000

UART1_DLL 0xFFF8.0100 R/W Divisor Latch Register (LS) (DLAB = 1) 0x0000.0000

UART1_DLM 0xFFF8.0104 R/W Divisor Latch Register (MS) (DLAB = 1) 0x0000.0000

UART1_IIR 0xFFF8.0108 R Interrupt Identification Register 0x8181.8181

UART1_FCR 0xFFF8.0108 W FIFO Control Register Undefined

UART1_LCR 0xFFF8.010c R/W Line Control Register 0x0000.0000

UART1_MCR 0xFFF8.0110 R/W Modem Control Register 0x0000.0000

UART1_LSR 0xFFF8.0114 R Line Status Register 0x6060.6060

UART1_MSR 0xFFF8.0118 R MODEM Status Register 0x0000.0000

UART1_TOR 0xFFF8.011c R/W Time Out Register 0x0000.0000

UART1_UBCR 0xFFF8.0120 R/W UART1 Bluetooth Control Register 0x0000.0000

UART2

UART2_RBR 0xFFF8.0200 R Receive Buffer Register (DLAB = 0) Undefined

UART2_THR 0xFFF8.0200 W Transmit Holding Register (DLAB = 0) Undefined

UART2_IER 0xFFF8.0204 R/W Interrupt Enable Register (DLAB = 0) 0x0000.0000

UART2_DLL 0xFFF8.0200 R/W Divisor Latch Register (LS) (DLAB = 1) 0x0000.0000

UART2_DLM 0xFFF8.0204 R/W Divisor Latch Register (MS) (DLAB = 1) 0x0000.0000

UART2_IIR 0xFFF8.0208 R Interrupt Identification Register 0x8181.8181

UART2_FCR 0xFFF8.0208 W FIFO Control Register Undefined

UART2_LCR 0xFFF8.020c R/W Line Control Register 0x0000.0000

Reserved 0xFFF8.0210

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 144

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

UART2_LSR 0xFFF8.0214 R Line Status Register 0x6060.6060

Reserved 0xFFF8.0218

UART2_TOR 0xFFF8.021c R/W Time Out Register 0x0000.0000

UART2_IRCR 0xFFF8.0220 R/W IrDA Control Register 0x0000.0040

UART3

UART3_RBR 0xFFF8.0300 R Receive Buffer Register (DLAB = 0) Undefined

UART3_THR 0xFFF8.0300 W Transmit Holding Register (DLAB = 0) Undefined

UART3_IER 0xFFF8.0304 R/W Interrupt Enable Register (DLAB = 0) 0x0000.0000

UART3_DLL 0xFFF8.0300 R/W Divisor Latch Register (LS) (DLAB = 1) 0x0000.0000

UART3_DLM 0xFFF8.0304 R/W Divisor Latch Register (MS) (DLAB = 1) 0x0000.0000

UART3_IIR 0xFFF8.0308 R Interrupt Identification Register 0x8181.8181

UART3_FCR 0xFFF8.0308 W FIFO Control Register Undefined

UART3_LCR 0xFFF8.030c R/W Line Control Register 0x0000.0000

UART3_MCR 0xFFF8.0310 R/W Modem Control Register 0x0000.0000

UART3_LSR 0xFFF8.0314 R Line Status Register 0x6060.6060

UART3_MSR 0xFFF8.0318 R MODEM Status Register 0x0000.0000

UART3_TOR 0xFFF8.031c R/W Time Out Register 0x0000.0000

11.3 Functional Descriptions

11.3.1 Baud Rate

The UART includes a programmable baud rate generator. The crystal clock input is divided by
divisor to produce the clock that transmitter and receiver need. The equation is

Baud Rate = Crystal clock / (16 * [Divisor + 2])

For W90P710 , the crystal clock input is 15 MHZ. The DLL and DLM registers consist of the low
byte and high byte of the divisor. The DLL and DLM registers aren’t accessible until the DLAB bit of
LCR register is set 1. The driver should program, the correct value into the DLL/DLM registers
according to the desired baud rate. Table 11-1 lists some general baud rate settings.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 145

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Table 11-1 General Baud Rate Settings

Baud Rate DLM DLL Real Error rate [%]
115200 0 6 117187.5 1.725
57600 0 14 58593.75 1.725
38400 0 22 39062.5 1.725
19200 0 47 19132.65 -0.35
9600 0 96 9566.33 -0.35

11.3.2 Initializations

Before the transfer operation starts, the serial interface of UART must be programmed. The driver
should set the baud rate, parity bit, data bit and stop bit. If the transfer operation is done triggered by
interrupt, the TX, RX and RLS interrupts need to be enabled. Figure 11-1 shows the initialization flow
of UART.

Figure 11-1 UART initialization

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 146

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Start

Set Baud Rate

Set parity bit , Data bits, and
Stop bit

Set Rx FIFO Trigger Level
Reset Tx, Rx FIFO

Set Time-Out Register

Enable Tx, Rx, RLS interrupt

End

1. Set 1 bit DLAB bit of LCR Register
2. Write divisor value to DLL, DLM

LCR Registers
7 DLAB : Divider Latch Access Bit
6 BCB : Break Control Bit
5 SPE : Stick Parity Bit
4 EPE : Even Parity Enable
3 PBE : Parity Bit Enable
2 NSB : Number of "STOP" bit

0 One "STOP" bit
1 1.5 "STOP" bit

1:0 WLS : Word Length Select
00 5 bits
01 6 bits
10 7 bits
11 8 bits

FCR Register
7:6 RFITL : Rx FIFO Interupt Trigger Level

00 1 Byte
01 4 Byte
10 8 Byte
11 14 Byte

2 TFR : Tx FIFO Reset
1 RFR : Rx FIFO Reset

IER Register
3 MSIE : Modem Status Interrupt Enable
2 RLSIE : Receive Line Status Interrupt Enable
1 THREIE : Transmit Holding Register Empty

Interrupt Enable
0 RADIE : Receive Data Available Interrupt Enable

and Time-out Interrupt Enable.

TOR
7 TOIE : Timeout Interrupt Enabled, IER Bit 0

RADIE should be enabled also.
6:0 Counter for Timeout (unit by baudrate)

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 147

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

11.3.3 Polled I/O Functions

The driver can transmit and receive data through UART by polling mode. The poll functions check
UART buffer by reading status register. If there’s at least one data byte available in receive FIFO, the
[RFDR] bit is set 1. It indicates that driver can read receive FIFO to get new data bytes. If the
transmitter is empty, the [TE] bit is set 1. Then the data bytes can be written into the transmit FIFO.
The data bytes in the transmit FIFO will be shifted to SOUT serially. Figure 11-2 and Figure 11-3
show the programming flow of transmit data and receive data in polling mode.

Figure 11-2 Transmit data in polling mode

Start

End

Read LSR

TE== 1 ?

Write 16 data bytes to THR

Y

N

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 148

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Figure 11-3 Receive data in polling mode

Start

Read LSR

RFDR bit == 1 ?

End

Read one data byte
from RBR

N

Y

11.3.4 Interrupted I/O Functions

The data bytes also can be transmitted and received through UART by interrupt control. The
interrupt service routine is responsible to move data bytes from driver’s buffer to transmit FIFO
whenever the THRE interrupt happens. If RDA or TOUT interrupts occurs, the interrupt service routine
should move the data bytes from receive FIFO to driver’s buffer.
On interrupt mode, the input and output functions are different from the polling functions. They read or
write the driver’s buffer instead of Tx /Rx FIFO. The output function writes the data bytes into driver’s
buffer and then enables THRE interrupt. The ISR will read the data bytes from driver’s buffer and
write them to the Tx FIFO when the transmitter FIFO empty interrupt occurs, or get the data bytes

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 149

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

from Rx FIFO the driver receiving buffer when the receiver threshold level reaching interrupt occurs.
When the input function is called, it reads the data bytes from driver’s receiving buffer and then return.
The Figure 11-4, Figure 11-5 and Figure 11-6 show the flow of output function, input function, and
interrupt service routine.

Figure 11-4 Output function in interrupt mode

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 150

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Start

Write one data byte to
driver's buffer

Is buffer available
for another data

byte ?

Enable THRE interrupt

Return the number of written
data bytes

End

N

Y

Figure 11-5 Input functions in interrupt mode

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 151

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Start

Is there at least
one data byte in
driver's buffer ?

Read one data bytes from
driver's buffer

Read the dresired
numbers ?

Return the number of read
data bytes

End

N

N

Y

Y

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 152

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Figure 11-6 Interrupt Service Routine

Start

ReadISR

Is THRE Interrupt ? Move data bytes from
driver buffer to Tx FIFO

Is data byte
available in

driver's buffer ?

Disable THRE interrupt

Is RDA or TOUT
interrupt ?

Read LSR

Move data byte
from Rx FIFO
to driver buffer

End

IIR[3:0] Interrupt Type
0110 RLS : Receiver Line Status
0100 RDA : Receive Data Available
1100 TOUT : Received FIFO Timeout
0010 THRE : Transmitter Holding
Register Empty
0000 MOS : Modem Status

Y

N

N

N

N

Y

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 153

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

11.3.5 IrDA SIR

The IrDA SIR block contains an IrDA SIR protocol encoder/decoder. The IrDA SIR protocol is half-
duplex only. So it cannot transmit while receiving, and vice versa. The IrDA SIR physical layer
specifies a minimum 10ms transfer delay between transmission and reception. This feature should be
implemented by software.

Figure 11-7 IrDA Tx/Rx

Is data byte
available in

driver ' s buffer ?

Disable THRE interrupt

Read LSR

Delay 10 ms
and enable

IrDA receiver
Move data byte
from Rx FIFO
to driver buffer

End

N

Y

N

Y

UART initialization

Enable IrDA
IRCR [0] IrDA _ EN
0 disable IrDA block
1 disable IrDA block

Start

Is THRE Interrupt ? Y
Enable IrDA transmitter and
Move data bytes from driver

buffer to Tx FIFO

N

Is RDA or TOUT
interrupt ?

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 154

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

12 Timers

12.1 Overview

The W90P710 Timer module includes two channels, TIMER0 and TIMER1, which allow user to
easily implement a counting scheme. Each channel has independent clock source. The input clock is
divided by an 8-bit pre-scalar and then referenced by a 24-bit down counter. When the counter counts
down to zero, the Timer will assert an interrupt request if the interrupt is enabled. A general software-
counting scheme is to set a software counter, and add 1 to it upon every interrupt.

The Timer module also includes a watchdog timer. It supports the system restart if the system
goes into problem. This prevents system from hanging for an infinite period of time. The watchdog
timer is a free running counter with programmable time-out intervals. When the specified time internal
interval expires, it asserts an interrupt to inform software to reset the counter. If the counter doesn’t be
reset during 512 WDT clocks, the watchdog timer will generate a system restart signals to reset the
whole system. Normally, the program should implement a task to periodically reset the counter if the
watchdog timer is enabled.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 155

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

12.2 Block Diagram

Figure 12-1 Timer Block Diagram

PCLK

PWRITE

PENABLE

PSEL

PADDR[31:0]

PRDATA[31:0]

PWDATA[31:0]

PRESETn

15 MHz

TCLK0

TCLK1

WTCLK

TCR0

TICR0

TDR0

TCR1

TICR1

TDR1

WTCR

TISR

8-BIT PRESCALE

24-BIT COUNTER

8-BIT PRESCALE

24-BIT COUNTER

24-BIT COUNTER

TINT0

TINT0

WDTINT

WDTRST

TIMER 0

TIMER 1

WATCHDOG TIMER

TOUT0

TOUT1

58.6KHz/15MHz

A
M

B
A

 A
PB

 In
te

rf
ac

e

12.3 Registers

R : read only, W : write only, R/W : both read and write, C : Only value 0 can be written
Register Address R/W/C Description Reset Value
TCR0 0xFFF8.1000 R/W Timer Control Register 0 0x0000.0005
TCR1 0xFFF8.1004 R/W Timer Control Register 1 0x0000.0005
TICR0 0xFFF8.1008 R/W Timer Initial Control Register 0 0x0000.0000
TICR1 0xFFF8.100C R/W Timer Initial Control Register 1 0x0000.0000
TDR0 0xFFF8.1010 R Timer Data Register 0 0x0000.0000

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 156

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

TDR1 0xFFF8.1014 R Timer Data Register 1 0x0000.0000
TISR 0xFFF8.1018 R/C Timer Interrupt Status Register 0x0000.0000
WTCR 0xFFF8.101C R/W Watchdog Timer Control Register 0x0000.0000

12.4 Functional Descriptions

12.4.1 Interrupt Frequency

The frequency of timer interrupt depends on the following equation :

Freq. = Crystal clock / ((pre-scaler+1) * counter))

For W90P710, the crystal clock input is 15 MHZ. According to the equation, user can decide the
values of pre-scalar and counter to get the desired interrupt frequency. Table 4-1demonstrates
several reference values.

Table 12-1 Timer Reference Setting Values

Frequency (1/sec) [Pre-Scalar] [Counter]
18 0 0xCB735
40 0 0x5B8D8
100 0 0x249F0

12.4.2 Initialization

The driver should set the operating mode, pre-scalar and counter before enable the timer
interrupt. The Timer supports one-shot, periodic and toggle mode for user to implement the counting
scheme.

• In one-shot mode, the interrupt signal is generated once and it’s not happen again unless the
timer is re-enabled later.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 157

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

• In periodic mode, the interrupt signal is generated periodically.

• In toggle mode, the interrupt signal is generated on each low-to-high or high-to-low transition
with 50% duty cycle.

Figure 12-2 shows the initialization sequence.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 158

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Figure 12-2 Timer Initialization Sequence

Start

Disable Timer

Set Operating
Mode,

Prescaler

Set Counter

Enable Timer

End

Clear [CE] and [IE] of
TCRx

TCR Register

30 CE : Counter Enable
29 IE : Interrupt Enable
28:27 Operating Mode

00 : One Shot
01 : Periodic
10 : Toggle
11 : Reserved

7:0 Pre-Scaler

TICR Register
23:0 Counter

Set [CE] and [IE] of
TCRx

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 159

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

12.4.3 Timer Interrupt Service Routine

A common timer interrupt service routine is very simple. It increases the software counter and
clears the timer interrupt status. Figure 12-3 shows the flow chart of such an interrupt service routine.

Figure 12-3 Timer Interrupt Service Routine

Start

Increase
Software
Counter

Clear Timer
Interrupt
Status

End

TISR Register

[0] TIF0 : If TIF0 bit is 1, write TIF0 bit
by 0 to clear Timer 0 Interrupt.
[1] TIF1: If TIF1 bit is 1, write TIF1 bit
by 0 to clear Timer 1 interrupt

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 160

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

12.4.4 Watchdog Timer

The register WTCR is used to control watchdog timer. The bit WTR should be set before enable
watchdog timer. It ensures that the watchdog timer restarts from a known state. Figure 12-4 and
Figure 12-5 illustrate how to use watchdog timer. Table 12-2 list the WatchDog Timeout period.

Table 12-2 WatchDog Timer Reset Time (Using 15MHz crystal)

WTIS[5:4] Interrupt
Time-out

Reset Time-out Actual time
WTCLK = 1

Actual time
WTCLK = 0

00 214 clocks 214 + 1024 clocks 0.28 sec 1.1 msec
01 216 clocks 216 + 1024 clocks 1.12 sec 4.3 msec
10 218 clocks 218 + 1024 clocks 4.47 sec 17 msec
11 220 clocks 220 + 1024 clocks 17.9 sec 70 msec

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 161

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Figure 12-4 Enable Watchdog Timer

Start

Reset WatchDog
Timer

Select Time-Out
Interval and

Enable
WatchDog Timer

End

Program WTR bit by 1 to WTCR to reset the
WatchDog Timer

WTCR Register
7 WTE : WatchDog Timer Enable
6 WTIE : WatchDog Timer Interrupt Enable
5:4 WTIS : WatchDog Timer Interrupt Select
1 WTRE : WatchDog Timer Reset Enable
0 WTR : WatchDog Timer Reset

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 162

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Figure 12-5 Watchdog Timer ISR

Start

Clear Interrupt
Flag and Reset

WatchDog
Timer

End

WTCR Register

[3] WTIF : WatchDog Timer Interrupt Flag
[0] WTR : WatchDog Timer Reset
// Clear Bit 3 to clear WatchDog Timer
Interrupt
1. WTCR = WTCR & 0xFFFFFFF7;
// Reset WatchDog Timer by Setting Bit 0
2. WTCR = WTCR | 0x1;

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 163

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

13 AIC (Advanced Interrupt Controller)

13.1 Overview

The W90P710 incorporates the advanced interrupt controller (AIC) that is capable of dealing
with the interrupt requests from 32 different interrupt sources. Currently, 31 interrupt sources are
defined. Each interrupt source is uniquely assigned to an interrupt channel (1 to 31). Every interrupt
channel can be enabled or disabled individually. A channel is treated as active if its corresponding
interrupt source has an interrupt request. Several status registers are used to distinguish the state of
these interrupt channels. The AIC will assert an interrupt request to CPU core (ARM7TDMI) only if
there’s at least one interrupt channel is active and enabled.

The software driver can implement a priority scheme based on the status register. However, the
AIC itself implements a proprietary eight-level priority scheme to improve the interrupt dispatch time. It
differentiates the available 31 interrupt sources into eight priority levels, level 0 is the highest one and
the level 7 is the lowest. Within each priority level, a lower channel number interrupt source has a
higher priority. The AIC will assert the FIQ request if the active and enabled interrupt channel is
assigned to priority level 0. For the interrupt channels that are assigned to other priority level, AIC will
assert an IRQ request. The IRQ can be preempted by the occurrence of the FIQ. Interrupt nesting is
performed automatically by the AIC.

Although the internal interrupt sources of W90P710 are intrinsically high-level sensitive, the driver
can configure each interrupt source to be either low-level sensitive, high-level sensitive, negative-
edge triggered, or positive-edge triggered.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 164

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

13.2 Block Diagram

Figure 13-1 AIC block diagram

A I C _ C T R L

R e c o r d e r
(A I C _ I R E C)

E n c o d e r
(A I C _ I E N C)

s t a t u s

m a s k r s t a t u s s t a t u s

n I R Q

P R I O R

P O L A RT R I G a s t a t u s

R d _ I P E R

E O S

V e c t o r
G e n e r a t o r

(A I C _ I V E C)

p r io r _ s t a t u s

V E C T O R

n F I Q

A P B
b u s

C L R E D G

I R Q

O I R Q

W r _ I P E R

N U M B E R

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 165

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

13.3 Registers

R : read only, W : write only, R/W : both read and write, C : Only value 0 can be written

Table 13-1 AIC Register Definition

Register Address R/W Description Reset Value
 AIC_SCR1 0xFFF8.2004 R/W Source Control Register 1 0x0000.0047

 AIC_SCR2 0xFFF8.2008 R/W Source Control Register 2 0x0000.0047

 AIC_SCR3 0xFFF8.200C R/W Source Control Register 3 0x0000.0047

 AIC_SCR4 0xFFF8.2010 R/W Source Control Register 4 0x0000.0047

 AIC_SCR5 0xFFF8.2014 R/W Source Control Register 5 0x0000.0047

 AIC_SCR6 0xFFF8.2018 R/W Source Control Register 6 0x0000.0047

 AIC_SCR7 0xFFF8.201C R/W Source Control Register 7 0x0000.0047

 AIC_SCR8 0xFFF8.2020 R/W Source Control Register 8 0x0000.0047

 AIC_SCR9 0xFFF8.2024 R/W Source Control Register 9 0x0000.0047

 AIC_SCR10 0xFFF8.2028 R/W Source Control Register 10 0x0000.0047

 AIC_SCR11 0xFFF8.202C R/W Source Control Register 11 0x0000.0047

 AIC_SCR12 0xFFF8.2030 R/W Source Control Register 12 0x0000.0047

 AIC_SCR13 0xFFF8.2034 R/W Source Control Register 13 0x0000.0047

 AIC_SCR14 0xFFF8.2038 R/W Source Control Register 14 0x0000.0047

 AIC_SCR15 0xFFF8.203C R/W Source Control Register 15 0x0000.0047

 AIC_SCR16 0xFFF8.2040 R/W Source Control Register 16 0x0000.0047

 AIC_SCR17 0xFFF8.2044 R/W Source Control Register 17 0x0000.0047

 AIC_SCR18 0xFFF8.2048 R/W Source Control Register 18 0x0000.0047

 AIC_SCR19 0xFFF8.204C R/W Source Control Register 19 0x0000.0047

 AIC_SCR20 0xFFF8.2050 R/W Source Control Register 20 0x0000.0047

 AIC_SCR21 0xFFF8.2054 R/W Source Control Register 21 0x0000.0047

 AIC_SCR22 0xFFF8.2058 R/W Source Control Register 22 0x0000.0047

 AIC_SCR23 0xFFF8.205C R/W Source Control Register 23 0x0000.0047

 AIC_SCR24 0xFFF8.2060 R/W Source Control Register 24 0x0000.0047

 AIC_SCR25 0xFFF8.2064 R/W Source Control Register 25 0x0000.0047

 AIC_SCR26 0xFFF8.2068 R/W Source Control Register 26 0x0000.0047

 AIC_SCR27 0xFFF8.206C R/W Source Control Register 27 0x0000.0047

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 166

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

 AIC_SCR28 0xFFF8.2070 R/W Source Control Register 28 0x0000.0047

 AIC_SCR29 0xFFF8.2074 R/W Source Control Register 29 0x0000.0047

 AIC_SCR30 0xFFF8.2078 R/W Source Control Register 30 0x0000.0047

 AIC_SCR31 0xFFF8.207C R/W Source Control Register 31 0x0000.0047

 AIC_IRSR 0xFFF8.2100 R Interrupt Raw Status Register 0x0000.0000

 AIC_IASR 0xFFF8.2104 R Interrupt Active Status Register 0x0000.0000

 AIC_ISR 0xFFF8.2108 R Interrupt Status Register 0x0000.0000

 AIC_IPER 0xFFF8.210C R Interrupt Priority Encoding Register 0x0000.0000

 AIC_ISNR 0xFFF8.2110 R Interrupt Source Number Register 0x0000.0000

 AIC_IMR 0xFFF8.2114 R Interrupt Mask Register 0x0000.0000

 AIC_OISR 0xFFF8.2118 R Output Interrupt Status Register 0x0000.0000

 AIC_MECR 0xFFF8.2120 W Mask Enable Command Register Undefined

 AIC_MDCR 0xFFF8.2124 W Mask Disable Command Register Undefined

 AIC_SSCR 0xFFF8.2128 W Source Set Command Register Undefined

 AIC_SCCR 0xFFF8.212C W Source Clear Command Register Undefined

 AIC_EOSCR 0xFFF8.2130 W End of Service Command Register Undefined

AIC_TEST 0xFFF8.2200 W ICE/Debug mode Register Undefined

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 167

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

13.4 Functional Descriptions

13.4.1 Interrupt channel configuration

Each interrupt channel has an independent source control register to set its type and priority. The
interrupt type of all W90P710 internal peripherals is positive-level triggered. This shouldn’t be
changed during normal operation. For the channel 2, 3, 4 and 5, the device driver must set the
pertinent interrupt type according to the external devices. The priority level of each interrupt channel is
completely decided by the interrupted device. After power-on or reset, all the channels are assigned
to priority level 0 7 by AIC. Figure 13-2 shows the content of source control register.

Figure 13-2 Source Control Register

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved Type Reserve
d Priority

Type [7:6] Interrupt Type

Low Level Sensitive

High-Level Sensitive
Negitive-Edge

Triggered
Positive-Edge

Triggered

0 0

0 1

1 0

1 1

13.4.2 Interrupt Masking

The W90P710 AIC provides a set of registers to mask individual interrupt channel. The Mask
Enable Command Register (AIC_MECR) is used to enable interrupt. Write 1 to a bit of MECR will

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 168

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

enable the corresponding interrupt channel. Oppositely, the Mask Disable Command Register
(AIC_MDCR) is used to disable the interrupt. Write 1 to a bit of MDCR will disable the corresponding
interrupt channel. Write 0 to a bit of AIC_MECR or AIC_MDCR has no effect. Therefore, the device
driver can arbitrarily change these two registers without keeping their original values. If it’s necessary,
the device driver can read the Interrupt Mask Register (AIC_IMR) to know whether the interrupt
channel is enabled or disabled. If the interrupt channel is enabled, its corresponding bit is read as 1,
otherwise 0.

13.4.3 Interrupt Clearing and Setting

For the interrupt channels that are level sensitive, the device driver doesn’t need to write the
Source Clear Command Register (AIC_SCCR) or End of Service Command Register
(AIC_EOSCR) to clear any AIC status. As soon as the device’s interrupt status has been was cleared,
the AIC de-asserts the interrupt request. For the interrupt channels that are edge-triggered, the device
driver must clear AIC status to de-assert the interrupt request. To clear AIC status, the device driver
may either write Source Clear Command Register (AIC_SCCR) or End of Service Command
Register (AIC_EOSCR). Write 1 to a bit of AIC_SCCR will clear the corresponding interrupt. The
usage of AIC_EOSCR will be discussed in the section Hardware Priority Scheme.

The register Source Set Command Register (AIC_SSCR) is used to active an interrupt channel
when it is programmed to edge-triggered. Write 1 to a bit of AIC_SSCR will set the corresponding
interrupt. This feature is useful in auto-testing or software debugging.

13.4.4 Software Priority Scheme

The AIC provides an Interrupt Status Register (AIC_ISR) to identify the interrupt sources. If an
interrupt channel is both active and enabled, its corresponding bit in AIC_ISR is set as 1. The interrupt
handler of FIQ or IRQ can get the interrupt sources by reading AIC_ISR. And the service sequence is
completely decided by software algorithm.

Generally, there’s a function table to keep the interrupt service routines of internal peripherals and
external devices. When the interrupt is recognized by CPU core, the FIQ or IRQ exception handler is

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 169

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

executed firstly. Then it will call the proper interrupt service routine according to the AIC_ISR content.
Figure 13-3 demonstrates a sequential priority scheme where channel 1 has the highest priority and
channel 17 18 has the lowest priority.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 170

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Figure 13-3 Sequential Priority Scheme

Start

Read AIC_ISR

Mask = 0x00001

AIC_ISR &
Mask != 0 ?

Call the corresponding
Interupt Service

Routine

Mask <<= 1;

Mask ==
0x40000 ?

End

Y

Y

N

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 171

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

13.4.5 Hardware Priority Scheme

The AIC implements a proprietary 8-level priority scheme. To use this mechanism, the proper
AIC_SCRx should be programmed before enable the interrupt channels. Similarly, the FIQ or IRQ
exception handler is executed firstly when the interrupt is recognized. The exception handler and
interrupt service routine should follow certain rules to let this mechanism work correctly. The rules are
listed below.

1. Reads IRQ Priority Encoding Register (AIC_IPER) to get the Vector (IRQ Channel x 4),
and at this mean time, the AIC_ISNR will be loaded by the current interrupt channel
number, the Vector (IRQ Channel Number x 4) represents the interrupt channel number
that is active, enabled, and has the highest priority, multiplied by 4, then stored on the
AIC_IPER. The data (Vector) got from AIC_IPER is convenient for the following interrupt
service route address calculation. enabled, and has the highest priority.

2. Branch to the corresponding interrupt service routine by adding Vector to the base of
interrupt service routine table.

3. Write any value to AIC_EOSCR to finish the interrupt.

The priority level of the interrupt channel that is active and enabled is treated as current priority
level. It is pushed into the Priority Encoder when AIC_IPER is read. In the same time, the AIC_ISNR
was loaded by the current encoded interrupt channel number. This prevents AIC from asserting an
interrupt request if the following active and enabled interrupt has lower priority level. Therefore, the
interrupt service routine must write AIC_EOSCR to pop the current priority level from priority Encoder
to let AIC service the interrupt channel with lower priority. This hardware priority control is helpful to
implement a nesting interrupt system.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 172

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

In contrast with the software priority scheme, the Vector provides a quicker method to reach the
interrupt service routine. The branch address can be easily got that adds Vector to the base of
interrupt service routine table. Figure 13-4 shows an example assembly code.

Figure 13-4 Interrupt Service Routine with Vector

STMFD SP!, {R0-R2} ; Push registers on stack

;Goto_Handler, jump to the correct handler
LDR R2, =AICBase
LDR R1, [R2,#AIC_IPER] ; gets the highest pending
vector
LDR PC, [PC, R1] ; jump to correct handler
NOP

;table of handler start address
DCD Fake_Interrupt
DCD Int1_Interrupt
DCD Int2_Interrupt
DCD Int3_Interrupt
DCD Int4_Interrupt
DCD Int5_Interrupt
DCD Int6_Interrupt
DCD Int7_Interrupt
DCD Int8_Interrupt
DCD Int9_Interrupt
DCD Int10_Interrupt
DCD Int11_Interrupt
DCD Int12_Interrupt
DCD Int13_Interrupt
DCD Int14_Interrupt
DCD Int15_Interrupt
DCD Int16_Interrupt
DCD Int17_Interrupt
DCD Int18_Interrupt
DCD Int19_Interrupt
DCD Int20_Interrupt
DCD Int21_Interrupt
DCD Int22_Interrupt
DCD Int23_Interrupt
DCD Int24_Interrupt
DCD Int25_Interrupt
DCD Int26_Interrupt
DCD Int27_Interrupt
DCD Int28_Interrupt
DCD Int29_Interrupt
DCD Int30_Interrupt
DCD Int31_Interrupt

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 173

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

It is very important that ISR must write AIC_EOSCR to restore to normal interrupt state once it
read the AIC_IPER. Otherwise, the next interrupt may not be serviced correctly Figure 13-5 shows the
programming flow of using hardware priority scheme.

Figure 13-5 Using hardware priority scheme

Start

Read AIC_IPER

Get the Branch
Address

Jump to Interrupt
Service Routine

W rite AIC_EOSCR

End

AIC_IPER = IRQ_Number * 4
Bit
31:7 Reserved
6:2 IRQ Number
1:0 0

Branchaddress = AIC_IPER +
INT_TABLE_BASE

W rite by Any Value to end
this interrupt service

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 174

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

14 General-Purpose Input/Output (GPIO)

14.1 Overview

The General-Purpose Input/Output (GPIO) module possesses 71 pins and serves multiple function
purposes. Each port can be configured by software to meet various system configurations and design
requirements. Software must configure each pin before starting the main program. If a pin is not used
for multiplexed functions, the pin can be configured as I/O port

Two extended interrupts nIRQ4 (GPIO0 pin) and nIRQ5 (nWAIT pin) are used the same interrupt
request (channel #31) of AIC. It can be programmed as low/high sensitive or positive/negative edge
triggered. When interrupt #31 assert in AIC, software can poll XISTATUS status register to identify
which interrupt occur.

These 71 IO pins are divided into 7 groups according to its pheripheral interface definition.

 Port0: 5-pin input/output port

 Port1: 10-pin input/output port

 Port2: 10-pin input/output port

 Port3: 8-pin input/output port

 Port4: 11-pin input/output port

 Port5: 15-pin input/output port

 Port6: 12-pin input/output port

Table 14-1 GPIO Multiplexed Functions Table

PORT0 Configurable Pin Functions
0 GPIO0 AC97_nRESET (I2S_MCLK) nIRQ4 USBPWREN
1 GPIO1 AC97_DATAI (I2S_DATAI) PWM0 DTR3
2 GPIO2 AC97_DATAO (I2S_DATAO) PWM1 DSR3

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 175

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

3 GPIO3 AC97_SYNC (I2S_LRCLK) PWM2 TXD3
4 GPIO4 AC97_BITCLK (I2S_BITCLK) PWM3 RXD3
PORT1 Configuration Pin Functions
0 GPIO20 SC1_PWR nXDACK VD8
1 GPIO21 SC1_PRES nXDREQ VD9
2 GPIO22 SC1_RST SD_CD VD10
3 GPIO23 SC1_CLK - VD11
4 GPIO24 SC1_DAT SD_DAT3 VD12
5 GPIO25 SC0_PWR SD_DAT2 VD13
6 GPIO26 SC0_PRES SD_DAT1 VD14
7 GPIO27 SC0_RST SD_DAT0 VD15
8 GPIO28 SC0_CLK SD_CLK VD16
9 GPIO29 SC0_DAT SD_CMD VD17
PORT2 Configuration Pin Functions
0 GPIO42 PHY_RXERR KPCOL0 -
1 GPIO43 PHY_CRSDV KPCOL1 -
2 GPIO44 PHY_RXD[0] KPCOL2 -
3 GPIO45 PHY_RXD[1] KPCOL3 -
4 GPIO46 PHY_REFCLK KPCOL4 -
5 GPIO47 PHY_TXEN KPCOL5 -
6 GPIO48 PHY_TXD[0] KPCOL6 -
7 GPIO49 PHY_TXD[1] KPCOL7 -
8 GPIO50 PHY_MDIO KPROW0 -
9 GPIO51 PHY_MDC KPROW1 -
PORT3 Configuration Pin Functions
0 GPIO60 D24 VD16 -
1 GPIO61 D25 VD17 -
2 GPIO62 D26 VD18 -
3 GPIO63 D27 VD19 -
4 GPIO64 D28 VD20 -
5 GPIO65 D29 VD21 -
6 GPIO66 D30 VD22 -
7 GPIO67 D31 VD23 -
PORT4 Configuration Pin Functions
0 GPIO52 D16 VD8 -
1 GPIO53 D17 VD9 -
2 GPIO54 D18 VD10 -
3 GPIO55 D19 VD11 -
4 GPIO56 D20 VD12 -
5 GPIO57 D21 VD13 -
6 GPIO58 D22 VD14 -
7 GPIO59 D23 VD15 -
8 GPIO68 nWBE2/SDQM2 - -
9 GPIO69 nWBE3/SDQM3 - -
10 GPIO70 nWAIT nIRQ5 -
PORT5 Configuration Pin Functions

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 176

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

0 GPIO5 TXD0 - -
1 GPIO6 RXD0 - -
2 GPIO7 TXD1 - -
3 GPIO8 RXD1 - -
4 GPIO9 TXD2 CTS1 PS2CLK
5 GPIO10 RXD2 RTS1 PS2DATA
6 GPIO11 SCL0 SFRM TIMER0
7 GPIO12 SDA0 SSPTXD TIMER1
8 GPIO13 SCL1 SCLK KPROW3
9 GPIO14 SDA1 SSPRXD KPROW2
10 GPIO15 nWDOG USBPWREN -
11 GPIO16 nIRQ0 - -
12 GP1O17 nIRQ1 USBOVRCUR -
13 GPIO18 nIRQ2 -
14 GPIO19 nIRQ3 - -
PORT6 Configuration Pin Function
0 GPIO30 VCLK KPROW0 -
1 GPIO31 VDEN KPROW1
2 GPIO32 VSYNC KPROW2 -
3 GPIO33 HSYNC KPROW3 -
4 GPIO34 VD0 KPCOL0 -
5 GPIO35 VD1 KPCOL1 -
6 GPIO36 VD2 KPCOL2 -
7 GPIO37 VD3 KPCOL3 -
8 GPIO38 VD4 KPCOL4 -
9 GPIO39 VD5 KPCOL5 -
10 GPIO40 VD6 KPCOL6 -
11 GPIO41 VD7 KPCOL7 -

14.2 Register Map

Register Address R/W Description Reset Value
GPIO_CFG0 0xFFF8.3000 R/W GPIO port0 configuration register 0x0000.0000
GPIO_DIR0 0XFFF8.3004 R/W GPIO port0 direction control register 0x0000.0000
GPIO_DATAOUT0 0xFFF8.3008 R/W GPIO port0 data output register 0x0000.0000
GPIO_DATAIN0 0xFFF8.300C R GPIO port0 data input register 0xXXXX.XXXX
GPIO_CFG1 0xFFF8.3010 R/W GPIO port1 configuration register 0x0000.0000
GPIO_DIR1 0XFFF8.3014 R/W GPIO port1 direction control register 0x0000.0000
GPIO_DATAOUT1 0xFFF8.3018 R/W GPIO port1 data output register 0x0000.0000
GPIO_DATAIN1 0xFFF8.301C R GPIO port1 data input register 0xXXXX.XXXX
GPIO_CFG2 0xFFF8.3020 R/W GPIO port2 configuration register 0x0000.0000
GPIO_DIR2 0XFFF8.3024 R/W GPIO port2 direction control register 0x0000.0000
GPIO_DATAOUT2 0xFFF8.3028 R/W GPIO port2 data output register 0x0000.0000
GPIO_DATAIN2 0xFFF8.302C R GPIO port2 data input register 0x0000.0000
GPIO_CFG3 0xFFF8.3030 R/W GPIO port3 configuration register 0x0000.5555

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 177

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

GPIO_DIR3 0XFFF8.3034 R/W GPIO port3 direction control register 0x0000.0000
GPIO_DATAOUT3 0xFFF8.3038 R/W GPIO port3 data output register 0x0000.0000
GPIO_DATAIN3 0xFFF8.303C R GPIO port3 data input register 0xXXXX.XXXX
GPIO_CFG4 0xFFF8.3040 R/W GPIO port4 configuration register 0x0015.5555
GPIO_DIR4 0XFFF8.3044 R/W GPIO port4 direction control register 0x0000.0000
GPIO_DATAOUT4 0xFFF8.3048 R/W GPIO port4 data output register 0x0000.0000
GPIO_DATAIN4 0xFFF8.304C R GPIO port4 data input register 0xXXXX.XXXX
GPIO_CFG5 0xFFF8.3050 R/W GPIO port5 configuration register 0x0000.0000
GPIO_DIR5 0XFFF8.3054 R/W GPIO port5 direction control register 0x0000.0000
GPIO_DATAOUT5 0xFFF8.3058 R/W GPIO port5 data output register 0x0000.0000
GPIO_DATAIN5 0xFFF8.305C R GPIO port5 data input register 0xXXXX.XXXX
GPIO_CFG6 0xFFF8.3060 R/W GPIO port6 configuration register 0x0000.0000
GPIO_DIR6 0XFFF8.3064 R/W GPIO port6 direction control register 0x0000.0000
GPIO_DATAOUT6 0xFFF8.3068 R/W GPIO port6 data output register 0x0000.0000
GPIO_DATAIN6 0xFFF8.306C R GPIO port6 data input register 0xXXXX.XXXX
GPIO_DBNCECON 0xFFF8.3070 R/W GPIO input debounce control register 0x0000.0000
GPIO_XICFG 0xFFF8.3074 R/W Extend Interrupt Configure Regitser 0xXXXX.XXX0
GPIO_XISTATUS 0xFFF8.3078 R/W Extend Interrupt Status Register 0xXXXX.XXX0

14.3 Functional Description

14.3.1 Multiple Functin Setting

The GPIO input/output and multiple function are configured by setting the GPIO_CFGn register.
The GPIO_CFGn register setting sequence is described as follows.

1. Read GPIO_CFGn to a variable.
2. Clean the corresponding field, PTxCFGy(two bit) of the GPIO pin in the variable.
3. Set the corresponding field, PTxCFGy of the GPIO pin in the variable.
4. Write the variable to GPIO_CFGn
Note: the x:port number, and y:pin number, for example PT0CFG1 as the pin 1 in port 0.

Programmer should not change the value of whole register except the corresponding field of the

register. A Sample code configure GPIO PORT0 pin1 as PWM output is given below:
int GPIO_CFG=0;
GPIO_CFG=inpw(0xFFF83000);// Get GPIO_CFG0 value
GPIO_CFG=GPIO_CFG&0xFF3;// Clean PT0CFG1
GPIO_CFG=GPIO_CFG|(0x2<<2); // Set PT0CFG1 as PWM0
outpw(xFFF83000,GPIO_CFG);// Write value to GPIO_CFG0

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 178

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

14.3.2 GPIO Output Mode

Before the system use the GPIO pin as output pin, program need to configure the GPIO direction
register(GPIO_DIRn). The configuration sequence is described as follows.

1. Set GPIO_CFGn PTxCFGy as GPIO purpose according to the adove method of Multiple
function setting

2. Set the GPIO_DIRn OMDENx[y] value as 1 (output mode).
3. Set the GPIO_DIRn PUPENx[y] value(internal pull-up enable or disable).

After the above steps, user can change the GPIO pin output value(high or low) by write 1 or 0 to
GPIO data output register(GPIO_DATAOUTn). Programmer should not change the value of whole
register except the corresponding field of the register.

A sample code set GPIO PORT0 pin1 as GPIO output, then change the output between high and

low is given below:

int GPIO_CFG=0;
// Set GPIO1 as I/O pin
GPIO_CFG=inpw(0xFFF83000);// Get GPIO_CFG0 value
GPIO_CFG=GPIO_CFG&0xFF3; // Set PT0CFG1, GPIO1 as I/O pin
outpw(xFFF83000,GPIO_CFG);// Write value to GPIO_CFG0

// Set GPIO1 as output mode, disable internal pull-up
GPIO_CFG=inpw(0xFFF83004);// Get GPIO_DIR0 value
GPIO_CFG=GPIO_CFG|(1<<17);// GPIO1 output mode
GPIO_CFG=GPIO_CFG&(0<<1) //disable pull-up
outpw(xFFF83004,GPIO_CFG);// Write value to GPIO_DIR0

// set GPIO1 output 1
GPIO_CFG=inpw(0xFFF83008);// Get GPIO_DATAOUT0 value
GPIO_CFG=GPIO_CFG|(1<<1);// GPIO1 output 1
outpw(xFFF83008,GPIO_CFG);// Write value to GPIO_DATAOUT0

// set GPIO1 output 0
GPIO_CFG=inpw(0xFFF83008);// Get GPIO_DATAOUT0 value
GPIO_CFG=GPIO_CFG&(0<<1);// GPIO1 output 0
outpw(xFFF83008,GPIO_CFG);// Write value to GPIO_DATAOUT0

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 179

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

14.3.3 GPIO Input Mode

Before the system use the GPIO pin as input pin, program need to configure the GPIO direction
register(GPIO_DIRn). The configuration sequence is described as follows.

1. Set GPIO_CFGn PTxCFGy as GPIO purpose according to the adove method of Multiple
function setting

2. Set the GPIO_DIRn OMDENx[y] value as 0 (input mode).
After the above steps, user can get the GPIO pin input value(high or low) by read the GPIO data

input register(GPIO_DATAINn).

A sample code set GPIO PORT0 pin1 as GPIO input, then get the input value is given below:

int GPIO_CFG=0;
int value=0;
// Set GPIO1 as I/O pin
GPIO_CFG=inpw(0xFFF83000);// Get GPIO_CFG0 value
GPIO_CFG=GPIO_CFG&0xFF3; // Set PT0CFG1, GPIO1 as I/O pin
outpw(xFFF83000,GPIO_CFG);// Write value to GPIO_CFG0

// Set GPIO1 as input mode
GPIO_CFG=inpw(0xFFF83004);// Get GPIO_DIR0 value
GPIO_CFG=GPIO_CFG&(0<<17);// GPIO1 input mode
outpw(xFFF83004,GPIO_CFG);// Write value to GPIO_DIR0

// get GPIO1 input value
value =inpw(0xFFF8300C)&0x02;
if(value)
 printf(“GPIO pin1 input value is 1.”);
else
 printf(“GPIO pin1 input value is 0.”);

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 180

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 181

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

15 Real Time Clock (RTC)

15.1 Overview

Real Time Clock (RTC) block can be operated by independent power supply while the system
power is off. The RTC block utilizes an external crystal to generate 32.768KHz clock. The RTC can
transmit data to CPU as BCD values. The data include the time by second, minute, hour and the date
by day, month, year. In addition, to reach better frequency accuracy, the RTC counter can be
adjusted by software.

The W90P710 Real Time Clock has the following features :

 Time counter (second, minute, hour) and calendar counter (day, month, year)

 Alarm register (second, minute, hour, day, month, year)

 12/24 hour mode selectable

 Recognize leap year automatically

 Day of the week counter

 Frequency compensate register(FCR)

 Beside FCR, all clock and alarm data expressed in BCD code

 Support tick time interrupt

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 182

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

15.2 Block Diagram

Figure 15-1 RTC Block Diagram

2^15 clock
divider

1 Hz

Alarm interrupt
generator

Time
counter

Calendar
counter

Time alarm
counter

Calendar alarm
counter

Day of the week
counter

1 Day

FCR
Compensate frequency

by software

Tick interrupt
generator

XTALIN

XTALOUT

Alarm

Tick
interrupt

Select one Tick
period

15.3 Register Map

Register Address R/W Description Reset Value

RTC_INIR 0xFFF8.4000 R/W RTC Initiation Register ???

RTC_AER 0xFFF8.4004 R/W RTC Access Enable Register 0x0000.0000

RTC_FCR 0xFFF8.4008 R/W RTC Frequency Compensation Register 0x0000.0700

RTC_TLR 0xFFF8.400C R/W Time Loading Register 0x0000.0000

RTC_CLR 0xFFF8.4010 R/W Calendar Loading Register 0x0005.0101

RTC_TSSR 0xFFF8.4014 R/W Time Scale Selection Register 0x0000.0001

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 183

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

RTC_DWR 0xFFF8.4018 R/W Day of the Week Register 0x0000.0006

RTC_TAR 0xFFF8.401C R/W Time Alarm Register 0x0000.0000

RTC_CAR 0xFFF8.4020 R/W Calendar Alarm Register 0x0000.0000

RTC_LIR 0xFFF8.4024 R Leap year Indicator Register 0x0000.0000

RTC_RIER 0xFFF8.4028 R/W RTC Interrupt Enable Register 0x0000.0000

RTC_RIIR 0xFFF8.402C R/C RTC Interrupt Indicator Register 0x0000.0000

RTC_TTR 0xFFF8.4030 R/W RTC Time Tick Register 0x0000.0000

15.4 Functional Description

15.4.1 Initialization

When RTC block is power on, programmer has to write a number Oxa5eb1357 to register INIR to
reset all logic. INIR act as hardware reset circuit. Once INIR has been set as 0xa5eb1357, user
cannot reload any other value.

15.4.2 RTC Read/Write Enable

Register AER bit 15~0 is RTC read /write password. It is used to avoid signal interference from
system during system power off. AER bit 15~0 has to be set as 0xa965 after system power on, and be
set as 0x0000 before system power off. Once it is set, it will take effect 10 RTC clocks later(about
300us). Programmer can read AER bit 16 to find out whether RTC register can be accessed.

15.4.3 Frequency Compensation

The RTC FCR allows software control digital compensation of a 32.768Khz crystal oscillator.
User can utilize a frequency counter to measure RTC clock in one of GPIO pin during manufacture,
and store the value in Flash memory for retrieval when the product is first power on.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 184

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

15.4.4 Application Note

 TAR,CAR,TLR,CLR are all BCD counter, but FCR is not a BCD counter.
 Programmer must be aware that the RTC block do not check whether the loaded value are

reasonable. For example, Load CLR as 201a (year), 13 (month), 00 (day), or CLR does not
match with DWR, etc.

 Reset state :

Register Value Describtion
AER 0 RTC read/write disable
CLR 05 , 1 ,1 2005-1-1
TLR 00 00 00 00 hr, 00 min, 00 sec
CAR 00,00,00 2000-0-0
TAR 00,00,00 00 hr, 00 min, 00 sec
TSSR 1 24 hr mode
DWR 6 Saturday
RIER 0 Time Tick Interrupt and counter

disable
RTC Alarm Interrupt disable

RIIR 0 Time tick interrupt has never
occurred
Alarm interrupt has never occurred

LIR 0 Indicate that this year is not a leap
year

TTR 0 Disable

 FCR Calibration :
A (a) FCR integer : look up the below table.

Integer part of
detected value

FCR[11:8] Integer part of
detected value

FCR[11:8]

32776 1111 32768 0111
32775 1110 32767 0110
32774 1101 32766 0101
32773 1100 32765 0100
32772 1011 32764 0011
32771 1010 32763 0010
32770 1001 32762 0001
32769 1000 32761 0000

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 185

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

(b) FCR fraction(RTC_FCR bit 5:0): Formula: FCR_int = (fraction part of detected value) X 60

Example 1,
Frequency counter measurement : 32773.65Hz
Integer part : 32773 => FCR [11:8] = 0xc
Fraction part : 0.65 X 60 = 39 (0x27) => FCR[5:0]=0x27

Example 2,

Frequency counter measurement : 32765.27Hz
Integer part : 32765 => FCR [11:8] = 0x4
Fraction part : 0.27 X 60 = 16.2 (0x10) => FCR [5:0] = 0x10

 In TLR and TAR, only 2 BCD digits are used to express “year”. We assume 2 BCD digits of XY
denote 20XY ,but not 19XY or 21XY.

15.5 Programming Note

15.5.1.1 Set Calendar and Time

1. When 710 RTC block is power on, programmer has to write a number 0xa5eb1357 to
INIR to reset all logic RTC

2. Read register INIR bit 0 if INIR0 equals to 1 means RTC has been set
3. Write 0xa965 to AER means enable RTC access enable/disable password
4. Read register AER bit 0, RTC is read/write enable if it’s equal to 1
5. Set register TSSR bit 1 select to 24-hour time scale test
6. Set year, month and day to register CLR
7. Set day of week to register DWR
8. Set hour, minute and second to register TLR
9. Write 0x0 to AER means disable RTC access enable/disable password

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 186

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Figure 15-2 RTC Set Calendar and Time flow chart

RTC
start

Initialize RTC
(INIR)

Initialize completed
(bit 0 of INIR be high?)

Enable register
R/W

(AER)

Enable register R/W
completeted

(bit 16 of AER be high?)

Y
E
S

N
O

N
O

Y
E
S

Set time scale
(TSSR)

Set time, day
and calendar
(TLR, DWR,

CLR)

Disable RTC
register R/W

(AER)

end

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 187

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

15.5.2 Set Calendar and Time Alarm

1. Set and prepare the ISR of RTC alarm
2. Set time and calendar same as above step 1-8
3. Set alarm year, month and day to register CAR
4. Set alarm hour, minute and second to register TLR
5. Set the bit 0 of RIER for alarm interrupt enable
6. Write 0x0 to AER means disable RTC access enable/disable password

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 188

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Figure 15-3 RTC Set Calendar and Time Alarm flow chart

RTC
start

INitialize RTC
(INIR)

Initilaize copleted
(bit 0 of INIR be high?)

Enable
register

R/W (AER)

Enable register R/W
completed

(bit 16 of AER behigh?)

Y
E
S

N
O

N
O

Y
E
S

Set time scale
(TSSR)

Set time, day and
calendar

(TLR, DWR and
CLR)

Disable RTC
register R/W

(AER)

end

Set alarm time
and calendar
(TAR, CAR)

Set alarm
interrupt enable

(RIER)

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 189

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

15.5.3 Set tick interrupt

1. Set and prepare the ISR of RTC tick interrupt
2. When 710 RTC block is power on, programmer has to write a number 0xa5eb1357 to

INIR to reset all logic RTC
3. Read register INIR bit 0 if INIR16 equals to 1 means RTC has been set
4. Write 0xa965 to AER means enable RTC access enable/disable password
5. Read register AER bit 0, RTC is read/write enable if it’s equal to 1
6. Set the TTR for tick interrupt happen time interval per second
7. Set the bit 1 of RIER for alarm interrupt enable
8. Write 0x0 to AER means disable RTC access enable/disable password

Figure 15-4 RTC Set tick interrupt flow chart

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 190

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

RTC start

Initialize RTC
(INIR)

Initialize completed
(bit 0 of INIR be high?)

Enable register R/
W

(AER)

Enable register R/W
completed (bit 16 of AER be

high?)

Y
E
S

N
O

N
O

Y
E
S

end

Set interrupt tick
number
(TTR)

Set tick interrupt
enable
(RIER)

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 191

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

16 Smart Card Host Interface

16.1 Overview

The whole chip of W90P710 operates at voltage level of 3.3 V except Smart Card Interface port's
I/O pins that are at 5 V to be compatible with mainstream Smart Card implementations. Advanced
power management feature further optimizes power consumption whether in operation or in power
down mode.

 ISO-7816 compliant
 PC/SC T=0, T=1 compliant
 16-byte transmitter FIFO and 16-byte receiver FIFO
 FIFO threshold interrupt to optimize system performance
 Programmable transmission clock frequency
 Versatile baud rate configuration
 UART-like register file structure
 Versatile 8-bit, 16-bit, 24-bit time-out counter for Ansswer To Reset (ATR) and waiting times

processing.
 Parity error counter in reception mode and in transmission mode with automatic re-

transmission.
 Automatic activation and deactivation sequence through an independence sequencer

16.2 Registers

R: read only, W: write only, R/W: both read and write, C: Only value 0 can be written.

Register Address R/W Description Reset Value
Smartcard Host Interface 0

SCHI_RBR0 0xFFF8.5000 BDLAB =0 R Receiver Buffer Register Undefined

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 192

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

SCHI_TBR0 0xFFF8.5000 BDLAB =0 W Transmitter Buffer Register Undefined

SCHI_IER0 0xFFF8.5004
BDLAB =0 R/W Interrupt Enable Register 0x0000.0080

SCHI_ISR0 0xFFF8.5008
BDLAB =0 R Interrupt Status Register 0X0000.00C1

SCHI_SCFR0 0xFFF8.5008
BDLAB =0 W Smart card FIFO Control Register 0x0000.0000

SCHI_SCCR0 0xFFF8.500C R/W Smart card Control Register 0x0000.0010
SCHI_CBR0 0xFFF8.5010 R/W Clock Base Register 0x0000.000C
SCHI_SCSR0 0xFFF8.5014 R Smart Card Status Register 0x0000.0060
SCHI_GTR0 0xFFF8.5018 R/W Guard Rime Register 0x0000.0001
SCHI_ECR0 0xFFF8.501C R/W Extended Control Register 0x0000.0052
SCHI_TMR0 0xFFF8.5020 R/W Test Mode Register 0x0000.0000
SCHI_TOC0 0xFFF8.5028 R/W Time out Configuration Register 0x0000.0000
SCHI_TOIR0_0 0xFFF8.502C R/W Time out Initial Register 0 0x0000.0000
SCHI_TOIR1_0 0xFFF8.5030 R/W Time out Initial Register 1 0x0000.0000
SCHI_TOIR2_0 0xFFF8.5034 R/W Time out Initial Register 2 0x0000.0000
SCHI_TOD0_0 0xFFF8.5038 R Time out Data Register 0 0x0000.00FF
SCHI_TOD1_0 0xFFF8.503C R Time out Data Register 1 0x0000.00FF
SCHI_TOD2_0 0xFFF8.5040 R Time out Data Register 2 0x0000.00FF
SCHI_BTOR0 0xFFF8.5044 R/W Buffer Time out Data Register 0x0000.0000

SCHI_BLL0 0xFFF8.5000 BDLAB =1 R/W Baud Rate Divisor Latch Lower Byte
Register 0x0000.001F

SCHI_BLH0 0xFFF8.5004 BDLAB =1 R/W Baud Rate Divisor Latch Higher Byte
Register 0x0000.0000

SCHI_ID0 0xFFF8.5008
BDLAB =1 R Smart Card ID Number Register 0x0000.0070

Smartcard Host Interface 1

SCHI_RBR1 0xFFF8.5800 BDLAB =0 R Receiver Buffer Register Undefined
SCHI_TBR1 0xFFF8.5800 BDLAB =0 W Transmitter Buffer Register Undefined
SCHI_IER1 0xFFF8.5804 BDLAB =0 R/W Interrupt Enable Register 0x0000.0080

SCHI_ISR1 0xFFF8.5008 BDLAB =0 R Interrupt Status Register 0X0000.00C1
SCHI_SCFR1 0xFFF8.5808 BDLAB =0 W Smart card FIFO Control Register 0x0000.0000

SCHI_SCCR1 0xFFF8.580C R/W Smart card Control Register 0x0000.0010
SCHI_CBR1 0xFFF8.5810 R/W Clock Base Register 0x0000.000C
SCHI_SCSR1 0xFFF8.5814 R Smart Card Status Register 0x0000.0060

SCHI_GTR1 0xFFF8.5818 R/W Guard Rime Register 0x0000.0001
SCHI_ECR1 0xFFF8.581C R/W Extended Control Register 0x0000.0052
SCHI_TMR1 0xFFF8.5820 R/W Test Mode Register 0x0000.0000

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 193

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

SCHI_TOC1 0xFFF8.5828 R/W Time out Configuration Register 0x0000.0000
SCHI_TOIR0_1 0xFFF8.582C R/W Time out Initial Register 0 0x0000.0000
SCHI_TOIR1_1 0xFFF8.5830 R/W Time out Initial Register 1 0x0000.0000
SCHI_TOIR2_1 0xFFF8.5834 R/W Time out Initial Register 2 0x0000.0000

SCHI_TOD0_1 0xFFF8.5838 R Time out Data Register 0 0x0000.00FF
SCHI_TOD1_1 0xFFF8.583C R Time out Data Register 1 0x0000.00FF
SCHI_TOD2_1 0xFFF8.5840 R Time out Data Register 2 0x0000.00FF

SCHI_BTOR1 0xFFF8.5844 R/W Buffer Time out Data Register 0x0000.0000

SCHI_BLL1 0xFFF8.5800 BDLAB =1 R/W Baud Rate Divisor Latch Lower Byte
Register 0x0000.001F

SCHI_BLH1 0xFFF8.5804 BDLAB =1 R/W Baud Rate Divisor Latch Higher Byte
Register 0x0000.0000

SCHI_ID1 0xFFF8.5808 BDLAB =1 R Smart Card ID Number Register 0x0000.0070

16.3 Functional Description

Please refer to ISO/IEC 7816-3 for detailed smart card transmission protocol.

16.3.1 Initialization Sequence

User needs to program control registers so that ATR (Answer To Reset) data streams can be
properly decoded after card insertion. Initialization settings include the following steps where sequential
order is irrelevant.

1. Register SCHI_BLH, SCHI_BLL and SCHI_CBR are written with 00h, 1Fh and 0Ch
respectively to comply with default transmission factors Fd and Dd which are 372 and 1 as
specified in ISO/IEC 7816-3.

2. Register SCHI_SCFR is programmed with 01h for one stop bit.
3. Set register SCHI_SCFR bit 1 to reset receiver FIFO.
4. Configure SCKFS[2~0] of register SCHI_ECR to 3’b101 to select 2.5 MHz for SCCLK on 80

MHz system clock.
5. Clear bit PWRDN of register SCHI_IER.
6. Set SC_REST of register SCHI_SCSR after 40000 clock cycles.
7. Process ATR.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 194

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Most default values of above control register and bits (eg. SCHI_BLH, SCHI_BLL, SCHI_CBR,
SCHI_GTR and SCKFS[2~0]) are designed as specified in initialization step but it is recommended
that user performs all the initialization sequence to avoid any ambiguity.

The relationship between transmission factors and settings of SCHI_BLH, SCHI_BLL and

SCHI_CBR is best described in the following example.

fD
FETU 11 ×= (f means SCCLK frequency)

Therefore,

() 1231CBRBLL,BLH
1

372
Dd
Fd

×=×==

16.3.2 Timers Usage

Three timers (timer0:8-bit, timer1:16-bit and timer2:24-bit) are offered for processing different real
time tasks, e.g. ATR, WWT. Each timer provides five operation modes, user can control these timers
by setting configuration bits (TOC[8~6], TOC[5-3], TOC[2-0] for timer0, timer1 and timer2 respectively)
in time-out configuration register SCHI_TOC. The five operation modes are listed below.

1. Mode 0 (3b’000):Timer is stopped.
2. Mode 1 (3b’001):Timer starts counting the value stored in time-out initial register SCHI_TOIR

after 3b’001 is written in register SCHI_TOC. When timer reaches its terminal count, an
interrupt is given if enable, and time-out flag bit (TO[2~0]) of register SCHI_SCSR will be set.
The counting is stopped by writing 3b’000 (change to Mode 0) in register SCHI_TOC, and
should be stopped before reloading new values in register SCHI_TOC.

3. Mode 2 (3b’010):Timer starts counting the content of register SCHI_TOIR on the first START
bit (reception or transmission) detected on the pin I/O after 3b’010 is written in register
SCHI_TOC. The timer is reloaded with SCHI_TOIR and starts counting on each subsequent
START bit. When timer reaches its terminal count, an interrupt is given if enable, and time-
out flag bit of register SCHI_SCSR will be set. It is possible to change the content of
SCHI_TOIR during a count; the current count will not be affected and the new count value will
be taken into account at the next START bit. The timer is stopped by writing 3b’000 in register
SCHI_TOC.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 195

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

4. Mode 3 (3b’011):Timer starts counting the content of register SCHI_TOIR on the first START
bit (reception or transmission) detected on the pin I/O after 3b’010 is written in register
SCHI_TOC. When timer reaches its terminal count, an interrupt is given if enable, and time-
out flag bit of register SCHI_SCSR will be set. The timer is stopped by writing 3b’000 in
register SCHI_TOC.

5. Mode 4 (3b’100): Same as Mode 0, except that timer will be stopped at the end of the 12th
ETU following the first START bit detected after 3b’100 has been written in register
SCHI_TOC.

Note:

(1) The count unit of all timers is 1 ETU.
(2) Need at least 1 ETU delay during mode translation (eg. change Mode 1,2 or 3 to Mode 0).
(3) Writing the same mode value to SCHI_TOC can’t trigger the same timer again, so must

change to Mode 0 before triggering the same mode.
(4) Current bug: when reading register SCHI_SCSR, time-out flag can’t be clean, if user

does not enable timer interrupt in register SCHI_IER.

Examples of using these timers are given below.

16.3.2.1 ATR

In case of a cold reset, after having applied CLK, the reader has to maintain RST in low state for
a period of between 40000 and 45000 clock cycles before set RST in high state.

1. Load register SCHI_TOIR0 with 0x6c. (40000 ≤ 0x6c * 372 ≤ 45000)
2. Configure TCO [2~0] in register SCHI_TCO with 3b’001.
3. Clear bit PWRDN of register SCHI_IER.
4. Wait for interrupt of TO0 in register SCHI_SCSR.
5. Set SC_REST of register SCHI_SCSR.

Then the answer to reset from the card should begin between 400 and 40000 clock cycles. That
means that the time between timer start counting and the leading edge of the start bit of the first
received character should not exceed 108 ETU. (40000 < 108 * 372 = 40176). If first character of ATR
has not been received before 120 ETU (include first received character transmitting time: 12 ETU), the
card can be considered as mute.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 196

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

6. Configure TOC[2~0] in register SCHI_TOC with 3b’000. (change to mode 0).
7. Load register SCHI_TOIR0 with 0x78.
8. Configure TCO[2~0] in register SCHI_TCO with 3b’001.
9. If first character of ATR has not been received before the timeout interrupt, the card can be

considered as mute.

If the first character of the answer to reset is received befor the timeout interrupt, one should
check if the time between every received character is less than 9600 ETU. Timer with Mode 2 could
be used to check this.

10. Clear TOC[2~0] in register SCHI_TOC with 3b’000 to stop timer 0.
11. Load register SCHI_TOIR1 with 0x2580. (9600 = 0x2580)
12. Configure TOC[5~3] in register SCHI_TOC with 3b’010.
13. During ATR transmission, if TO1 in register SCHI_SCSR is set, a initial waiting time error has

been detected.
14. Once the complete ATR has been received, timer 1 have to be stopped.

16.3.2.2 WWT

During the reception phase of T=0 protocol, timer could be used to check Work Waiting Time
(WWT).

1. Load SCHI_TOIR2 with the value of WWT(960 * WI * D), and TCO[8~6] in register SCHI_TCO
with 3b’010 before receiving the first character.

2. If TO2 in register SCHI_SCSR is set, a timeout error has been detected and the card has to be
deactivated.

3. Clear TCO[8~6] in register SCHI_TCO after having received the last character from card.

16.3.3 Receiver FIFO Data Time-out

Bit 7 (RxTL1) and Bit 6 (RxTL2) in register SCHI_SCFR are used to set the active threshold level
for the receiver FIFO. For example, if the active threshold level is set as 4 bytes, once there are at
least 4 data characters in the receiver FIFO, an interrupt is activated to notify host to read data from
FIFO.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 197

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

In principle, the higher the active threshold level is set, the better performance we get. But if big
active threshold level is set, received data characters maybe stored in receiver FIFO for a long time,
because the number of data characters may not reach active threshold level and interrupt can’t be
trigger.

To avoid this circumstance, user can set BTOIE and BTOIC[6~0] in register SCHI_BTOR to

enable receiver buffer timeout interrupt. If BTOIE and ERDRI (in register SCHI_IER) are set, one
internal timer resets and starts counting (the counting unit is ETU) whenever the receiver FIFO
receives a new data word. Once the content of timer is equal to that of time out interrupt comparator
(BTOIC[6~0]), a receiver time out interrupt is generated. The interrupt notifies host to read data from
FIFO. A new incoming data word or receiver FIFO empty clear this interrupt.

16.3.4 Parity Error management

The error character in reception or in transmission will cause parity error. Bit 4 (EPE) in register
SCHI_SCCR enables even parity check. When EPE is set to ‘1’, even parity is required for
transmission and reception. Odd parity is demanded whe EPE is set to ‘0’.

The bits 5, 4, 3 (PEC[2~0]) in register SCHI_SCFR determine the number of allowed repetitions

in reception or in transmission before setting bit 2 (PBER) in register SCHI_SCSR. The value 000
indicates that, if only one parity error has occurred, PBER is set; the value 111 indicate that bit PBER
will be set after 8 parity errors.

According to different protocol type, there are different process for parity error, the protocol type

is set by bit 3 (PROT) in register SCHI_SCCR:

In protocol T = 0
 - In reception

1. If the programmed number (PEC[2~0]) of allowed parity errors is reached, bit PBER in register
SCHI_SCSR will be set as long as register SCHI_SCSR has not been read.

2. If a correct character is received before the programmed error number is reached, the error
counter will be reset

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 198

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

3. The pin I/O is NACK at 10.5 ETU for each error character to indicate parity error and this error
character does not enter receiver FIFO.

 - In transmission

1. If a transmitted character has been NACK by the card, then our smart card host interface will
automatically re-transmit it a number of times equal to the value programmed in PEC[2~0].

2. If bits PEC[2~0] are logic 0, then the automatic re-transmission is invalided; the character
manually rewritten in register SCHI_TBR will start at 13.5 ETU.

In protocol T = 0

1. The error counter has no action; bit PBER is set at the first incorrectly received character.
2. In reception the character with parity error enter into the receiver FIFO and the pin I/O is not

NACK.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 199

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

17 I2C Synchronous Serial Interface Controller

17.1 Overview

The W90P710 I2C includes two channels, I2C_0 and I2C_1, which is a two-wire, bi-directional
serial bus that provides a simple and efficient method of data exchange between devices. The I2C
standard is a true multi-master bus including collision detection and arbitration that prevents data
corruption if two or more masters attempt to control the bus simultaneously.

8-bit oriented bi-directional serial data can transfers up to 100 kbit/s in Standard-mode, up to 400
kbit/s in the Fast-mode, or up to 3.4 Mbit/s in the High-speed mode. Only 100kbps and 400kbps
modes are supported directly. For High-speed mode special IOs are needed. If these IOs are
available and used, then High-speed mode is also supported.

Data is transferred between a Master and a Slave synchronously to SCL on the SDA line on a
byte-by-byte basis. Each data byte is 8 bits long. There is one SCL clock pulse for each data bit with
the MSB being transmitted first. An acknowledge bit follows each transferred byte. Each bit is
sampled during the high period of SCL; therefore, the SDA line may be changed only during the low
period of SCL and must be held stable during the high period of SCL. A transition on the SDA line
while SCL is high is interpreted as a command (START or STOP).

The I2C Master Core includes the following features:
AMBA APB interface compatible

Compatible with Philips I2C standard, support master mode

Multi Master Operation

Clock stretching and wait state generation

Provide multi-byte transmit operation, up to 4 bytes can be transmitted in a single transfer

Software programmable acknowledge bit

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 200

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Arbitration lost interrupt, with automatic transfer cancellation

Start/Stop/Repeated Start/Acknowledge generation

Start/Stop/Repeated Start detection

Bus busy detection

Supports 7 bit addressing mode

Fully static synchronous design with one clock domain

Software mode I2C

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 201

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

17.2 Block Diagram
Figure 17-1 I2C Block Diagram

scl_pad_o/scl_padoen_o
sda_pad_o/sda_padoen_o
sdo_pad_o/sdo_padoen_o

i2c_int_o

pclk

preset_n

paddr

pwrite

psel

penable

pwdata

pben

prdata

scl_pad_i
sda_pad_i

sdo_pad_i
I/O

Decoder
Registers

A
M

B
A

 A
PB

 In
te

rf
ac

e

Clock
Prescale

I2C
Core Logic

17.3 Register Map
Register Address R/W Description Reset value

I2C Interface 0

I2C_CSR0 0xFFF8.6000 R/W Control and Status Register 0x0000.0000

I2C_DIVIDER0 0xFFF8.6004 R/W Clock Prescale Register 0x0000.0000

I2C_CMDR0 0xFFF8.6008 R/W Command Register 0x0000.0000

I2C_SWR0 0xFFF8.600C R/W Software Mode Control Register 0x0000.003F

I2C_RxR0 0xFFF8.6010 R Data Receive Register 0x0000.0000

I2C_TxR0 0xFFF8.6014 R/W Data Transmit Register 0x0000.0000

I2C Interface 1

I2C_CSR1 0xFFF8.6100 R/W Control and Status Register 0x0000.0000

I2C_DIVIDER1 0xFFF8.6104 R/W Clock Prescale Register 0x0000.0000

I2C_CMDR1 0xFFF8.6108 R/W Command Register 0x0000.0000

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 202

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

I2C_SWR1 0xFFF8.610C R/W Software Mode Control Register 0x0000.003F

I2C_RxR1 0xFFF8.6110 R Data Receive Register 0x0000.0000

I2C_TxR1 0xFFF8.6114 R/W Data Transmit Register 0x0000.0000

17.4 Functional Description

17.4.1 Prescale Frequency

It is used to prescale the SCL clock line. Due to the structure of the I2C interface, the core uses a
5*SCL clock internally. The prescale register must be programmed to this 5*SCL frequency (minus 1).
Change the value of the prescale register only when the I2C_EN bit is cleared.

Example: pclk = 32MHz, desired SCL = 100KHz

)(3)(631
1005

32 hexFdec
KHz

MHzprescale ==−
∗

=

17.4.2 Start and Stop Signal

The I2C core generates a START signal when the START bit in register CMDR is set
and the READ or WRITE bits are also set. Depending on the current status of the SCL
line, a START or Repeated START is generated.

The I2C core generates a STOP signal when the STOP bit in the register CMDR is set
and the READ or WRITE bits are also set.

17.4.3 Slave Address Transfer

The core treats a Slave Address Transfer as any other write action. Store the slave device’s
address in the register TxR and set the WRITE bit in CMDR register. The core will then transfer the
slave address on the bus.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 203

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

17.4.4 Data Transfer

To write data to a slave, store the data to be transmitted in the TxR and set the WRITE bit in
CMDR. To read data from a slave, set the READ bit in CMDR. During a transfer the core set the
I2C_TIP flag, indicating that a Transfer is In Progress. When the transfer is done the I2C_TIP flag in
CSR is cleared, the IF flag set if enabled, then an interrupt generated. The Receive Register RxR
contains valid data after the IF flag has been set. The software may issue a new write or read
command when the I2C_TIP flag is cleared.

17.4.5 Below list Some Examples of I2C Data Transaction

17.4.5.1 Write One Byte of Data to Slave

Slave address = 0x50 (7b'1010000)
Data address = 0x1234
Data to write = 0xAC

I2C Sequence:
1. Generate start command
2. Start multiple data transfer

(1) Write slave address + write bit and receive acknowledge from slave
(2) Write data address high byte and receive acknowledge from slave
(3) Write data address low byte and receive acknowledge from slave
(4) Write data and receive acknowledge from slave

3. Generate stop command

f rom m as ter to s lav e

f rom s lav e to m as ter

A = acknowledge (SD A low)
A = not acknowledge (SD A high)
S = STAR T condit ion
P = STOP condit ion

S Slave A ddress
(7b'1010000) R/W A Data A ddress

(0x12) A A /A PData A ddress
(0x34) A Data

(0xA C)

'0'(write)

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 204

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Commands:
1. Write a value into DIVIDER register to determine the frequency of serial clock.
2. Set Tx_NUM = 0x3 and set I2C_EN = 1 of CSR register to enable I2C core.
3. Write 0xA0 (slave address + write bit 0) to TxR register (TxR[31:24]).
4. Write address high byte (0x12) to TxR register (TxR[23:16]), and address low byte (0x34) to

TxR register (TxR[15:8]).
5. Write data 0xAC to TxR register (TxR[7:0]).
6. Set START bit, STOP bit, and WRITE bit of CMDR register.
7. Wait for interrupt or I2C_TIP flag to negate
8. Read I2C_RxACK bit of CSR register, it should be '0'. If it is not ‘0’, there are some errors

happened.

17.4.5.2 Multi-byte (n bytes) write to a slave

Slave address = 0x51 (7b'1010001)
Data address to write to = 0x1234
Multi-byte data to write

I2C Sequence:
1. Generate start command
2. Start multiple data transfer

(1) Write slave address + write bit and receive acknowledge from slave
(2) Write data address high byte and receive acknowledge from slave
(3) Write data address low byte and receive acknowledge from slave

3. Write data and receive acknowledge from slave for n times
4. Generate stop command

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 205

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

A

f rom master to slav e

f rom slav e to master

A = acknowledge (SDA low)
A = not acknowledge (SDA high)
S = START condition
P = STOP condition

S Slave Address
(7b'1010001) A Data Address

(0x12) A A/A PData Address
(0x34) A Data 1

data transf er
(n by tes + acknowledge)

Data nR/W

'0'(write)

.............

Commands:
1. Write a value into DIVIDER register to determine the frequency of serial clock.
2. Set Tx_NUM = 0x2 and set I2C_EN = 1 of CSR register to enable I2C core.
3. Write 0xA2 (slave address + write bit 0) to TxR register (TxR[23:16]).
4. Write address high byte (0x12) to TxR register (TxR[15:8]), and address low byte (0x34) to

TxR register (TxR[7:0]).
5. Set START bit, and WRITE bit of CMDR register.
6. Wait for interrupt or I2C_TIP flag to negate
7. Read I2C_RxACK bit of CSR register, it should be '0'. If it is not ‘0’, there are some errors

happened.
8. Write data to TxR register (TxR[7:0]).
9. Set WRITE bit of CMDR register.
10. Wait for interrupt or I2C_TIP flag to negate
11. Read I2C_RxACK bit of CSR register, it should be '0'. If it is not ‘0’, there are some errors

happened.
12. Continue step 8 -11 before the final byte transmit
13. Write final byte to TxR register (TxR[7:0]).
14. Set WRITE bit, and STOP bit of CMDR register for final byte transmit.
15. Wait for interrupt or I2C_TIP flag to negate
16. Read I2C_RxACK bit of CSR register, it should be '0'. If it is not ‘0’, there are some errors

happened.

17.4.5.3 Read a byte of data from an I2C memory device (Random read)

Slave address = 0x4E (7'b1001110)
Memory location to read from = 0x20

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 206

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

I2C sequence:
1. Generate start signal
2. Write slave address + write bit, then receive acknowledge from slave
3. Write memory location, then receive acknowledge from slave
4. Generate repeated start signal
5. Write slave address + read bit, then receive acknowledge from slave
6. Read byte from slave
7. Write not acknowledge (NACK) to slave, indicating end of transfer
8. Generate stop signal

'0' (write)

S Slave Address
(7'b 1001110) R/W Data A PData address

(0x20) AA

'1' (read)

S Slave Address
(7'b 1001110) R/W A

f rom master to slav e

f rom slav e to master

A = acknowledge (SDA low)
A = not acknowledge (SDA high)
S = START condition
P = STOP condition

Commands:
1. Write a value into DIVIDER register to determine the frequency of serial clock.
2. Set Tx_NUM = 0x01 and set I2C_EN = 1 of CSR register to enable I2C core.
3. Write 0x9C (slave address + write bit 0) to TxR[15:8], set 0x20 to TxR[7:0].
4. Set START bit, and WRITE bit of CMDR register.
5. Wait for interrupt or I2C_TIP flag to negate
6. Read I2C_RxACK bit from CSR register, it should be '0'. If it is not ‘0’, there are some errors

happened.
7. Write 0x9D (slave address + read bit 1) to TxR[7:0].
8. Set START bit, and WRITE bit of CMDR register.
9. Wait for interrupt or I2C_TIP flag to negate
10. Read I2C_RxACK bit from CSR register, it should be '0'. If it is not ‘0’, there are some errors

happened.
11. Set READ bit, set ACK to '1' (NACK), and set STOP bit of CMDR register.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 207

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

12. Wait for interrupt or I2C_TIP flag to negate
13. Read I2C_RxACK bit of CSR register, it should be '0'. If it is not ‘0’, there are some errors

happened.
14. Read out received data from RxR register, it will put on RxR[7:0].

17.4.5.4 Read multi-byte data from slave (Sequential read)

Slave address = 0x4E (7'b1001110)
Memory location to read from = 0x60

I2C sequence:
1. Generate start signal
2. Write slave address + write bit, then receive acknowledge from slave
3. Write memory location, then receive acknowledge from slave
4. Generate repeated start signal
5. Write slave address + read bit, then receive acknowledge from slave
6. Read byte from slave and write acknowledge (ACK) for n-1 times
7. Read byte from slave and write not acknowledge (NACK) to slave, indicating end of transfer
8. Generate stop signal

'0'(write)

data transf er
(n by tes + acknowledge)

S Slave Address
(7'b 1001110) R/W

Data 1 A Data n A P

Data address
(0x60) AA

'1'(read)

S Slave Address
(7'b 1001110) R/W A

f rom master to slav e

f rom slav e to master

A = acknowledge (SDA low)
A = not acknowledge (SDA high)
S = START condition
P = STOP condition

.............

Commands:
1. Write a value into DIVIDER register to determine the frequency of serial clock.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 208

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

2. Set Tx_NUM = 0x01 and set I2C_EN = 1 of CSR register to enable I2C core.
3. Write 0x9C (slave address + write bit 0) to TxR[15:8], set 0x60 to TxR[7:0].
4. Set START bit, and WRITE bit of CMDR register.
5. Wait for interrupt or I2C_TIP flag to negate
6. Read I2C_RxACK bit from CSR register, it should be '0'. If it is not ‘0’, there are some errors

happened.
7. Write 0x9D (slave address + read bit 1) to TxR[7:0].
8. Set START bit, and WRITE bit of CMDR register.
9. Wait for interrupt or I2C_TIP flag to negate
10. Read I2C_RxACK bit from CSR register, it should be '0'. If it is not ‘0’, there are some errors

happened.
11. Set READ bit of CMDR register.
12. Wait for interrupt or I2C_TIP flag to negate
13. Read I2C_RxACK bit from CSR register, it should be '0'. If it is not ‘0’, there are some errors

happened.
14. Read out received data from RxR register, it will put on RxR[7:0].
15. Continue step 11 - 14 until the final byte read
16. Set READ bit, set ACK to '1' (NACK), and set STOP bit of CMDR register.
17. Wait for interrupt or I2C_TIP flag to negate.
18. Read I2C_RxACK bit of CSR register, it should be '0'. If it is not ‘0’, there are some errors

happened.
19. Read out received final data from RxR register, it will put on RxR[7:0].

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 209

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

18 Universal Serial Interface
18.1 Overview

The Universal Serial Interface (USI) is a synchronous serial Interface performs a serial-to-parallel
conversion on data characters received from the peripheral, and a parallel-to-serial conversion on
data characters received from CPU. This interface can drive up to 2 external peripherals and is seen
as the master. It can generate an interrupt signal when data transfer is finished and can be cleared by
writing 1 to the interrupt flag. The active level of device/slave select signal can be chosen to low active
or high active, which depends on the peripheral it’s connected. Writing a divisor into DIVIDER register
can program the frequency of serial clock output. This master core contains four 32-bit
transmit/receive buffers, and can provide burst mode operation. The maximum bits can be
transmitted/received is 32 bits, and can transmit/receive data up to four times successive.

The USI (MICROWIRE/SPI) Master Core includes the following features:

 AMBA APB interface compatible

 Support USI (MICROWIRE/SPI) master mode

 Full duplex synchronous serial data transfer

 Variable length of transfer word up to 32 bits

 Provide burst mode operation, transmit/receive can be executed up to four times in one
transfer

 MSB or LSB first data transfer

 Rx and Tx on both rising or falling edge of serial clock independently

 2 slave/device select lines

 Fully static synchronous design with one clock domain

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 210

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

18.2 Block Diagram
Figure 18-1 Universal Serial InterfaceI Block Diagra

mw_sclk_o

mw_int_o
mw_ss_o[1:0]

mw_so_o
mw_si_i

pclk

preset_n

paddr

pwrite

psel

penable

pwdata

pben

prdata

I/O
Decoder

Registers

Clock
Generator

Tx/Rx
Buffer

MICROWIRE/SPI
Core Logic

A
M

B
A

 A
PB

 In
te

rf
ac

e

Pin descriptions:
mw_sclk_o: USI serial clock output pin.
mw_int_o: USI interrupt signal output.
mw_ss_o: USI slave/device select signal output.
mw_so_o: USI serial data output pin (to slave device).
mw_si_i: USI serial data input pin (from slave device).

18.3 Register Map

R : read only, W : write only, R/W : both read and write, C : Only value 0 can be written

Register Address R/W Description Reset Value

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 211

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

USI_CNTRL 0XFFF8.6200 R/W Control and Status Register 0x0000.0004

USI_DIVIDER 0xFFF8.6204 R/W Clock Divider Register 0x0000.0000

USI_SSR 0xFFF8.6208 R/W Slave Select Register 0x0000.0000

Reserved 0xFFF8.620C N/A Reserved N/A

USI_Rx0 0xFFF8.6210 R Data Receive Register 0 0x0000.0000

USI_Rx1 0xFFF8.6214 R Data Receive Register 1 0x0000.0000

USI_Rx2 0xFFF8.6218 R Data Receive Register 2 0x0000.0000

USI_Rx3 0xFFF8.621C R Data Receive Register 3 0x0000.0000

USI_Tx0 0xFFF8.6210 W Data Transmit Register 0 0x0000.0000

USI_Tx1 0xFFF8.6214 W Data Transmit Register 1 0x0000.0000

USI_Tx2 0xFFF8.6218 W Data Transmit Register 2 0x0000.0000

USI_Tx3 0xFFF8.621C W Data Transmit Register 3 0x0000.0000

NOTE 1: When software programs CNTRL, the GO_BUSY bit should be written last.

18.4 Functional Description

18.4.1 Active Universal Serial Interface

To activate the USI, please follow the steps below:

1. Set the TX_BIT_LEN bit of USI_CNTRL register to set the transmit bit length

2. Set the TX_NUM bit of USI_CNTRL register to set the transfer numbers

3. Set the GO_BUSY bit of USI_CNTRL register to activate Universal Serial Interface

4. Polling GO_BUSY bit of USI_CNTRL register until it was cleared, or waiting IF interrupt of
USI_CNTRL register

18.4.2 Initialize Universal Serial Interface

To initial the Universal Serial Interface, please follow the steps below:

1. Set USI_DIVIDER register to generate the serial clock on output clock

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 212

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

2. Set USI_SSR register to select the access device

3. Set LSB bit of USI_CNTRL register to send LSB or MSB first

4. Set the IE bit of USI_CNTRL register to enable Universal Serial Interface interrupt

18.4.3 Universal Serial Interface Transmit/Receive

To transmit/receive the data, please follow the steps below:

1. Fill the data into USI_Tx0 ~ USI_Tx3 registers

2. Activate the Universal Serial Interface

3. Receive the data from USI_Rx0 ~ USI_Rx3 registers

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 213

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

19 Pulse Width Modulation (PWM) Timer

19.1 Overview

The W90P710 have 4 channels PWM.Timer. They can be divided into two groups. Each group
has 1 prescaler, 1 clock divider, 2 clock selectors, 2 16-bit counters, 2 16-bit comparators, 1 Dead-
Zone generator. They are all driven by PCLK (80MHz). Each channel can be used as a timer and
issue interrupt independently.

Two channels PWM.Timer in one group share the same prescaler. Clock divider provides each
channel with 5 clock sources (1, 1/2, 1/4, 1/8, 1/16). Each channel receives its own clock signal from
clock divider which receives clock from 8-bit prescaler. The 16-bit counter in each channel receive
clock signal from clock selector and can be used to handle one PWM period. The 16-bit comparator
compares number in counter with threshold number in register loaded previously to generate PWM
duty cycle.

The clock signal from clock divider is called PWM clock. Dead-Zone generator utilize PWM clock
as clock source. Once Dead-Zone generator is enabled, output of two PWM timer in one group is
blocked. Two output pin are all used as Dead-Zone generator output signal to control off-chip power
device.

To prevent PWM driving output pin with unsteady waveform, 16-bit counter and 16-bit comparator
are implemented with double buffering feature. User can feel free to write data to counter buffer
register and comparator buffer register without generating glitch.

When 16-bit down counter reaches zero, the interrupt request is generated to inform CPU that
time is up. When counter reaches zero, if counter is set as toggle mode, it is reloaded automatically
and start to generate next cycle. User can set counter as one-shot mode instead of toggle mode. If
counter is set as one-shot mode, counter will stop and generate one interrupt request when it reaches
zero.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 214

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

The value of comparator is used for pulse width modulation. The counter control logic changes
the output level when down-counter value matches the value of compare register.

The PWM timer has the following features:
 Two 8-bit prescalers and two clock dividers
 Four clock selectors
 Four 16-bit counters and four 16-bit comparators
 Two Dead-Zone generator

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 215

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

19.2 Block Diagram
Figure 19-1 PWM Block Diagram

1
1/2
1/4
1/8

1/16

PCLK
8-bit

prescaler

Control
logic

5-1 M
ux

5-1 M
ux

CNR

Control
logic

pwm_clk

CMR

CNR CMR

Dead zone
generator Dead zone

Dead zone

19.3 Register Map
Register Address R/W/C Description Reset Value

PPR 0xFFF8.7000 R/W PWM Prescaler Register 0000.0000

CSR 0xFFF8.7004 R/W PWM Clock Select Register 0000.0000

PCR 0xFFF8.7008 R/W PWM Control Register 0000.0000

CNR0 0xFFF8.700C R/W PWM Counter Register 0 0000.0000

CMR0 0xFFF8.7010 R/W PWM Comparator Register 0 0000.0000

PDR0 0xFFF8.7014 R PWM Data Register 0 0000.0000

CNR1 0xFFF8.7018 R/W PWM Counter Register 1 0000.0000

CMR1 0xFFF8.701C R/W PWM Comparator Register 1 0000.0000

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 216

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

PDR1 0xFFF8.7020 R PWM Data Register 1 0000.0000

CNR2 0xFFF8.7024 R/W PWM Counter Register 2 0000.0000

CMR2 0xFFF8.7028 R/W PWM Comparator Register 2 0000.0000

PDR2 0xFFF8.702C R PWM Data Register 2 0000.0000

CNR3 0xFFF8.7030 R/W PWM Counter Register 3 0000.0000

CMR3 0xFFF8.7034 R/W PWM Comparator Register 3 0000.0000

PDR3 0xFFF8.7038 R PWM Data Register 3 0000.0000

PIER 0xFFF8.703C R/W PWM Interrupt Enable Register 0000.0000

PIIR 0xFFF8.7040 R/C PWM Interrupt Indication Register 0000.0000

19.4 Functional Description

19.4.1 Prescaler and clock selector

W90P710 has two groups (two channels in each group) of pwm timers. The clock input of the
group is according to the PWM Prescaler Register (PPR) value. W90P710 PWM prescaler divided the
clock input by PPR+1 before it is fed to the counter. Please notice that when the PPR value equals
zero, the prescaler output clock will stop. Furthermore, according to the PWM Clock Select Register
(CSR) value, the clock input of PWM timer channel can be divided by 1,2,4,8 and 16.

Consider following examples, which explain the PWM timer period.

CSRPPRPCLK ÷+÷
=

)1()(
1period

When the PCLK=80 MHz, the maximum and minimum PWM timer counting period is described
as follows.

Maximum period: PPR=255(since the length of PPR is 8bit) and CSR=16

us
Mhz

2.51
16)1255()80(

1periodmax =
÷+÷

=

Minimum period: PCLK=80 MHz, PPR=1 and CSR=1

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 217

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

us
Mhz

025.0
1)11()80(

1periodmin =
÷+÷

=

The maximum and minimum interval between two interrupts are acdcroding to the periodmax ,
periodmin and PWM Counter Register(CNRx) length. The maximum interval between two interrupts is
(65535)*(51.2us) since the length of CNR is 16bit. Please notice that the above calculation is based
on the PCLK=80MHz. Therefore, all of the values need to be recalculated when the PCLK is not
equal to 80Mhz.

19.4.2 Basic PWM timer operation and double buffering reload automatically

W90P710 PWM Timers have a double buffering function, enabling the reload value changed for
next timer operation without stopping current timer operation. Although new timer value is set, current
timer operation still operate successfully.

The counter value can be written into CNR0, CNR1, CNR2, CNR3 and current counter value can
be read from PDR0, PDR1, PDR2, PDR3.

The auto-reload operation copies fromCNR0, CNR1, CNR2, CNR3 to down-counter when down-
counter reaches zero. If CNR0~3 are set as zero, counter will be halt when counter count to zero. If
auto-reload bit is set as zero, counter will be stopped immediately.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 218

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Figure 19-2 PWM operation

pwm_out

write a nonzero
number to prescaler &

setup clock dividor

Start

Reg_CNR=150
Reg_CMR=50

151

51

200

50

Reg_CNR=199
Reg_CMR=49

Reg_CNR=99
Reg_CMR=0

100

1

Reg_CNR=0
Reg_CMR=XX

Stop

PWM double buffering

19.4.3 PWM Timer Start Procedure

The PWM Timer start procedure is is described as follows.:

5. Setup clock selector (CSR)
6. Setup prescaler & dead zone interval (PPR)
7. Setup inverter on/off, dead zone generator on/off, toggle mode /one-shot mode, and pwm

timer off. (PCR)
8. Setup comparator register (CMR)
9. Setup counter register (CNR)
10. Setup interrupt enable register (PIER)
11. Enable pwm timer (PCR)

A flowchart of this procedure is given in the following figure.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 219

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Figure 19-3 PWM Timer Start Procedure

PWM Timer Start

Setup prescaler & dead zone
interval (PPR)

Setup clock selector (CSR)

Setup Dead-Zone generator on/off

End

Setup GPIO

Setup inverter on/off
toggle mode/one-shot mode

Setup CNR, CMR

Setup PIER

Start PWM timer

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 220

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

19.4.4 PWM Timer Stop Procedure

Three different methods could used to stop PWM timer, they’re listed below:

Method 1: Set 16-bit down counter(CNRx) as 0, and monitor PDR. When PDRx reaches to 0,
disable pwm timer (PCR). (Recommended)

Method 2: Set 16-bit down counter(CNRx) as 0. When interrupt request happen, disable
pwm timer (PCR). (Recommended)

Figure 19-4 PWM Timer Stop flow chart (method 1)

PWM
running

Set PWM counter
register be zero
(PWM_CNRx)

Wait for count
down data be zero

(PWM_PDRx)

PWM
stop

Disable PWM
timer (PWM_PCR)

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 221

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Figure 19-5 PWM Timer Stop flow chart (method 2)

PWM
running

Set PWM counter
register be zero
(PWM_CNRx)

Wait for interrupt
happen

(PWM_PIIR)

PWM
stop

Disable PWM
timer

(PWM_PCR)

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 222

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

20 Keypad Interface

20.1 Overview

W90P710 Keypad Interface (KPI) is an APB slave with 4-row scan output and 8-column scan
input. KPI scans an array up to 16x8 with an external 4 to 16 decoder. It can also be programmed to
scan 8x8 or 4x8 key array. If the 4x8 array is selected then external decoder is not necessary
because the scan signals are derived by W90P710 itself. Any 1 or 2 keys in the array that pressed are
debounced and encoded. If more than 2 keys are pressed, only the keys or apparent keys in the array
with the lowest address will be decoded.

KPI supports 2-keys scan interrupt and specified 3-keys interrupt or chip reset. If the 3 pressed
keys matches with the 3 keys defined in KPI3KCONF, it will generate an interrupt or chip reset to
nWDOG reset output depend on the ENRST setting. The interrupt is generated whenever the scanner
detects a key is pressed. The interrupt conditions are 1 key, or 2 keys.

W90P710 provides two keypad connecting interface. One is allocated in LCD (GPIO30-41)
interface, the other is in Ethernet RMII PHY interface and I2C interface 2 SDA1, SCL1 (GPIO42-51).
Software should set KPSEL bit in KPICONF register to decide which interface is used as keypad
connection port.

The keypad interface has the following features:

 maximum 16x8 array

 programmable debounce time

 low-power wakeup mode

 programmable three-key reset

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 223

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

20.2 Block Diagram
Figure 20-1 Keypad Controller Block Diagram

clock
dvider prescalar

row
counter

8 : 3
encoder

row/column
buffer & control

Three_keys
buffers

&debounce
counter

DBTC[7:0]

comparator&

comparator low power
wakeup

row scan
generation

&

STATUS
register

WAKEUP
register

E
N

3
K
Y

E
N

R
S
T

CLOCK
15MHz

KPI_INT

KPI_RST

KPI_ROW

KPI_COL

KPI_WAKEUP

20.3 Register Map

Register Address R/W Description Reset Value
KPICONF 0xFFF8.8000 R/W Keypad controller configuration Register 0x0000.0000
KPI3KCONF 0xFFF8.8004 R/W Keypad controller 3-keys configuration register 0x0000.0000
KPILPCONF 0xFFF8.8008 R/W Keypad controller low power configuration

register
0x0000.0000

KPISTATUS 0xFFF8.800C R/O Keypad controller status register 0x0000.0000

20.4 Functional Description

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 224

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

20.4.1 KPI Interface Programming Flow

The KPI usage procedure is described as follows.

1. Install KPI interrupt service routine
2. Configure GPIO KPI Multiple function
3. Configure register KPICONF
4. Configure register KPI3KCONF if application needs to use this function.
5. Wait for keypad flag set by KPI ISR
6. Get KPI row and column value in register KPISTATUS, then go back to step 5

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 225

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Figure 20-2 KPI Interface flowchart

20.4.2 KPI Low Power Mode Configuration

When the system enters power down or idle mode, user can use KPI interrupt to wake up it.
Programming need to set WAKE bit and configure LPWCEN[15:8] and LPWR[3:0] register
KPILPCONF for enable wake up function.

KPI Start

Initialize KPI
(GPIO, KPI_CONF)

Install KPI interrupt service routine

Wait for keypad flag set by KPI ISR

keypad flag

Setup three key value if necessary
(KPI3KCONF)

No

Get row and column value

Yes

Continue?

No

End

Yes

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 226

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Please note that the define of the row address keys(LPWR[3:0]) used to wakeup. For 16x8 or 8x8
(with 4:16 or 3:8 decoder) keypad tye configuration, LPWR means “Hex” code but for 4x8 (without
decoder), LPWR means “binary” code. For example, if user wants to use all keys on row 3 of 16x8
keyapd to wakeup W90P710, then 0x3 should be fill into this register but for 4x8 keypad it should be
filled as 4’b1000.., and Specify columns for low power wakeup (LPWCEN[15:8]). For example, if user
wants to use kyes in row N and column 0, 2, 5 to wake up W90P710, then the LPWCEN should be fill
8’b00100101. Figure 20-3 shows the flowchart.

Figure 20-3 KPI set Wake-Up in system low power mode flowchart

KPI Start

Install KPI
Configuration

(GPIO, KPI_CONF)

Set KPI Low Pow er
Configuration
(KPILPCONF)

Wait for KPI Interrupt
(KPISTATUS)

Let System Idle or
into Low Pow er

Mode

Emd

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 227

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

21 PS/2 Host Interface Controller

21.1 Overview

W90P710 PS/2 host controller interface implements a bi-directional serial protocol to connect a
IBM AT or PS/2 keyboard. The host controller handles the electronic interface and protocol without
software involving. If any key is being pressed, released, or held down, the keyboard will send a
packet of information known as a "scan code" to host controller. The host controller will put the scan
code and its corresponding ASCII code iinto registers, then generate an interrupt to note software
driver. Instead of using interrupt method, the software drives can continuously read the status register
to check whether a scan code arrived or not. Besides, the host controller provides a command
register for software driver to send commands to keyboard.

Some devices implementing PS/2 protocol can be connected to this host controller. For example,
the BAR code scanner. But the PS/2 mouse may not work with this host controller. Because the host
controller can’t distinguish “E0” (for extended byte) and “F0” (for break code) from a data byte of a
mouse movement data packet.

21.2 Scan Code Set

For PS/2 keyboard, there are two different types of scan codes: "make codes" and "break
codes". A make code is sent when a key is pressed or held down. A break code is sent when a key
is released. Every key is assigned its own unique make code and break code. The set of make and
break codes for every key comprises a "scan code set". There are three standard scan code sets,
named one, two, and three. All modern keyboards default to set two. The W90P710 PS/2 host
controller can identify the ASCII code of a key is being pressed, released or held down according to
the scan code set two. The following figures show the key map of scan code set two. All the scan
codes are shown in Hex.

Figure 21-1 Key map of PS/2 keyboard

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 228

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Figure 21-2 Key map of extended keyboard & Numeric keypad

Although most set two make codes are only one-byte wide, there are a handfull of "extended
keys" whose make codes are two or four bytes wide. These make codes can be identified by the fact
that their first byte is E0h. In addition to every key having its own unique make code, they all have
their own unique break code. And certain relationships exist between make codes and break codes.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 229

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

Most set two break codes are two bytes long where the first byte is F0h and the second byte is the
make code for that key. Break codes for extended keys are usually three bytes long where the first
two bytes are E0h, F0h, and the last byte is the last byte of that key's make code. Figure 21.3 shows
the set two make codes and break codes for a few keys.

Figure 21-3 Make Code and Break Code

Key
(Set 2)

Make Code

(Set 2)

Break Code

“A” 1C F0, 1C

“5” 2E F0, 2E

“F10” 09 F0, 90

Right Arrow E0, 74 E0, F0, 74

Right “Ctrl” E0, 14 E0, F0, 14

21.3 Register Map

The PS/2 interface host controller provides four control registers. The regisger PS2CMD is used
to send command to a PS/2 device. The register PS2STS indicates the status of transmit and receive
of PS/2 interface. The registers PS2SCANCODE and PS2ASCII are used to store the scan code and
ASCII code of the key arrived.

Register Address R/W Description Reset Value
PS2CMD 0xFFF8.9000 R/W PS2 Host Controller Command Register 0x0000.0000
PS2STS 0xFFF8.9004 R/W PS2 Host Controller Status Register 0x0000.0000
PS2SCANCODE 0xFFF8.9008 RO PS2 Host Controller RX Scan Code Register 0x0000.0000
PS2ASCII 0xFFF8.900C RO PS2 Host Controller RX ASCII Code Register 0x0000.0000

21.4 Functional Description
21.4.1 Initialization

The PS/2 clock and data are shared pins. The register GPIO_CFG5 must be set for selecting
PS/2 interface. After that, the software driver can send a reset command to reset a PS/2 device.

1. Configure GPIO_CFG5 (0xFFF83050) : set bits 11 ~ 8 to 0xF

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 230

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

2. Send Reset Command (0xFF) to PS/2 device.

21.4.2 Send Commands

The content of the command register is showed below.

Table 21-1 Command register PS2CMD

31 30 29 28 27 26 25 24
RESERVED

23 22 21 20 19 18 17 16
RESERVED

15 14 13 12 11 10 9 8
RESERVED RAP_SHIF EnCMD

7 6 5 4 3 2 1 0
PS2CMD

To send a command, write the command code to field PS2CMD[7:0], then write 1 to bit
EnCMD to start the transmit. After the transmit complete, EnCMD is automatically cleared to 0
and an interrupt is generated. Below are some of the commands the host may send to the
keyboard.

Table 21-2 Command table

Command
Code Description

ED
Set Status LED's - This command can be used to turn on and off the Num Lock, Caps Lock &
Scroll Lock LED's. After Sending ED, keyboard will reply with ACK (FA) and wait for another
byte which determines their Status. Bit 0 controls the Scroll Lock, Bit 1 the Num Lock and Bit 2
the Caps lock. Bits 3 to 7 are ignored.

EE Echo - Upon sending a Echo command to the Keyboard, the keyboard should reply with a
Echo (EE)

F0
Set Scan Code Set. Upon Sending F0, keyboard will reply with ACK (FA) and wait for another
byte, 01-03 which determines the Scan Code Used. Sending 00 as the second byte will return
the Scan Code Set currently in Use

F3 Set Typematic Repeat Rate. Keyboard will Acknowledge command with FA and wait for
second byte, which determines the Typematic Repeat Rate.

F4 Keyboard Enable - Clears the keyboards output buffer, enables Keyboard Scanning and
returns an Acknowledgment.

F5 Keyboard Disable - Resets the keyboard, disables Keyboard Scanning and returns an
Acknowledgment.

FE Resend - Upon receipt of the resend command the keyboard will re- transmit the last byte sent.

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 231

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

FF Reset - Resets the Keyboard.

21.4.3 Read scan code and ASCII code

The registers PS2SCANCODE and PS2ASCII are used to store the information sent by keyboard
or other PS/2 devices.

Scan Code Register

Table 21-3 Register PS2SCANCODE

31 30 29 28 27 26 25 24
RESERVED

23 22 21 20 19 18 17 16
RESERVED

15 14 13 12 11 10 9 8
RESERVED RX_shift_key RX_release RX_extend

7 6 5 4 3 2 1 0
RX_SCAN_CODE

 RX_release

When one key has been released, the keyboard will send its break code that is preceded
by a data byte 0xF0 to host controller. This bit indicates software that host controller
receives release byte (F0). This bit is read only and will update when host has received
next data byte

 RX_extend

A handful of the keys on keyboard are extended keys and thus require two more scan
code. These keys are preceded by a data byte 0xE0. This bit indicates software that Host
controller receives extended byte (E0). This bit is read only and will update when host has
received next data byte

 RX_SCAN_CODE

The host controller will put the received scan code into field RX_SCAN_CODE. But note
that the host controller will not report “Extend” (0xE0) or “Break” (0xF0) scan code in this

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 232

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

field and not generate if they are received. The software driver must read bits RX_entend
and RX_release to decide whether the received data byte is an “Extend” or “Break” scan
code.

ASCII Code Register

Table 21-4 Register PS2ASCII

31 30 29 28 27 26 25 24
RESERVED

23 22 21 20 19 18 17 16
RESERVED

15 14 13 12 11 10 9 8
RESERVED

7 6 5 4 3 2 1 0
RX_ASCII_CODE

 RX_ASCII_CODE

This field stores the ASCII data content transmitted from device. Therefore, this part
translates the scan code into an ASCII value. It will be read as 0x2E when there is no
ASCII code mapped to the scan code stored in RX_SCAN_CODE register. This filed is
valid when RX_IRQ is asserted.

21.4.4 Interrupt Service Routine

As soon as an interrupt occurs, the software driver needs to read the status from register
PS2STS. The status shows a scan code arrived or a command has been sent.

Table 21-5 Register PS2ST

31 30 29 28 27 26 25 24
RESERVED

23 22 21 20 19 18 17 16
RESERVED

15 14 13 12 11 10 9 8

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 233

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

RESERVED
7 6 5 4 3 2 1 0
RESERVED TX_err TX_IRQ RESERVED RX_IRQ

 TX_IRQ

This Transmit Complete Interrupt bit will be set to 1 if Host controller writing command to
device is finished. Software needs to write one to this bit to clear this interrupt.

 RX_IRQ

This Receive Interrupt bit will be set to 1 if Host controller receives one byte data from
device. This data is stored at PS2_SCANCODE register. Software needs to write one to
this bit to clear this interrupt after reading receiving data in RX_SCAN_CODE register.
Note that the reception of the Extend (0xE0) and Release (0xF0) scan code will not cause
an interrupt by host. The case of the shift key codes will be determined by the
TRAP_SHIFT bit of PS2_CMD register.

The following figure illustrates an example interrupt service routine.

Figure 21-4 Example ISR

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 234

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

START

END

Read register PS2STS

Is RX_IRQ == 1 ?

A scan code arrived !
1. Set a software envent
2. Read registers PS2SCANCODE & PS2ASCII

Is TX_IRQ == 1 ?

A command has been sent
Set a software event

Clear interrupt status
Write 1 to clear TX-IRQ & RX_IRQ

YES

YES

NO

NO

2. Read interrupt status from register PS2STS
3. If RX_IRQ is set go to step 3, otherwise go to step 4

NO: W90P710 Programming Guide VERSION: 2.0 PAGE: 235

The above information is the exclusive intellectual property of Winbond Electronics and shall not be disclosed, distributed or reproduced without permission
from Winbond.

Table No.: 2005-W90P710-11-A

4. A scan code arrived. Set a software event and read the registers PS2SCANCODE and
PS2ASCII.

5. If TX_IRQ is set go to step 5, otherwise go to step 6.
6. A command has been sent. Set a software event.
7. Clear the interrupt by wrinting 1 to the corresponding interrupt bits.

21.4.5 Example

This example tells that how to turn on/off the LEDs on the keyboard if host controller receives the
scan codes including 0x77 (Num Lock), 0x58 (Caps Lock) and 0x7E (Scroll Lock). The steps for
controlling the Keyboard LED are listed below:

1. Write command 0xED (Set status LED’s) to register PS2CMD.
2. Wait for keyboard’s reply 0xFA by checking register PS2SCANCODE.
3. Write LED status to register PS2CMD. The LED status defines in following table. The LED is

turned on if the status bit is 1, otherwise the LED is turned off.

Table 21-6 LED Status byte

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

 Caps
Lock

Num
Lock

Scroll
Lock

