

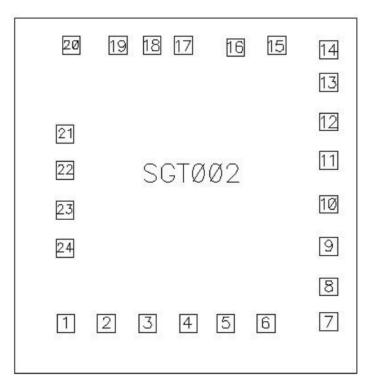
SGT002 Product Specification

09/03/24 Page 1 of 9 V1.2

1. 概述

SGT002 是一顆專為 16 個按鍵設計的低成本高穩定性的電容式觸摸檢測 IC,有意取代傳統固定 PAD 尺寸的直接按鈕鍵,讓使用者輕易上手並且能簡單應用於自己的系統上,提供 2 線串行通訊端口。

2. 特點


- 工作電壓: 2.4V~5.5V
- 工作電流: 典型值 500uA (VDD=4.5V Fosc=1MHz)
- 提供 16 個觸摸檢測端口(Touch Pad)
- 提供2線串行通訊端口
- 依據操作環境需求,可通過 CS 電容選擇不同的靈敏度
- 振蕩方式: RC 振蕩器
- 提供 16 位計數器

3. 應用

- 消費電子: MP3、MP4、IPOD、數碼相框等
- 家用電器: 微波爐、電磁爐、電壁爐、熱水器、油煙機、顯示器等
- 醫療保健: 按摩器材、醫療通訊機、呼叫機等
- 燈飾開關:牆壁開關、(調光)台燈、床頭燈、裝飾燈、會議燈
- 其他領域: 玩具、儀器儀表、遥控器、工業控制等各種領域

4. CHIP PAD 示意圖

Substrate Size (襯底面積): 2000um×2000um (襯底接地)

Pin No.	Pin Name	Type	Function Description
1	SW11	I/O	觸摸檢測端口
2	SW10	I/O	觸摸檢測端口
3	SW9	I/O	觸摸檢測端口
4	SW8	I/O	觸摸檢測端口
5	SW7	I/O	觸摸檢測端口
6	SW6	I/O	觸摸檢測端口
7	SW5	I/O	觸摸檢測端口
8	SW4	I/O	觸摸檢測端口
9	SW3	I/O	觸摸檢測端口
10	SW2	I/O	觸摸檢測端口
11	SW1	I/O	觸摸檢測端口
12	SW0	I/O	觸摸檢測端口

Pin No.	Pin Name	Type	Function Description		
13	INT	О	計數器狀態標志		
14	DATA	I/O	串口數據端口		
15	V2	I	電壓輸入端口		
16	GND	I	地 線		
17	V1	I	電壓輸入端口		
18	CLK	I	串口時鐘端口		
19	ROSC	I	RC 振蕩器輸入端		
20	VDD	I	電源端口		
21	SW15	I/O	觸摸檢測端口		
22	SW14	I/O	觸摸檢測端口		
23	SW13	I/O	觸摸檢測端口		
24	SW12	I/O	觸摸檢測端口		

5. 功能描述

5.1 寄存器

SGT002 內部包含 4 個寄存器: 分别是端口選擇寄存器(地址 00)、控制寄存器(地址 01)、 計數器低位寄存器(地址 10, 只讀), 計數器高位寄存器(地址 11, 只讀)

端口選擇寄存器 TSEL: 地址 00, 可讀可寫:

TSEL[2:0]------時鐘頻率選擇控制位;

TSEL[5:3]-----保留位

TSEL[6]-------時鐘控制位, TSEL[6]=1'b0,選擇內部時鐘; TSEL[6]=1'b1, 選擇外部時鐘;

TSEL[7]-------時鐘控制位, TSEL[7]=1`b0, 關斷內部時鐘; TSEL[6]=1`b1, 使能內部時鐘;

TSEL[2:0]	說明	TSEL[2:0]	說明
000	選擇 2 分頻	100	選擇 32 分頻
001	選擇 4 分頻	101	選擇 64 分頻
010	選擇 8 分頻	110	選擇 128 分頻
011	選擇 16 分頻	111	選擇 256 分頻

上電复位值: 00000000

09/03/24 Page 4 of 9 V1.2

控制寄存器 TCTL: 地址 01, 可讀可寫:

TCTL[7]------計數器使能控制位。當用軟件將 Bit7 置為"1"時, 16 位計數器清"0", 並開始計數。當計數器停止計數時, TCTL[7]將自動被清"0"。

TCTL[6]-----保留位

TCTL[5]-----16 位計數器溢出標志位。只能軟件清"0"。當計數器溢出後,該位置被置"1"。 溢出後計數器重新載入"0",重新計數。

TCTL[4]------計數器狀態標志。當計數器計數完成並停止計數時, TCTL[4]為"1"; 在計數器開始計數前,則只能通過軟件將該位清零

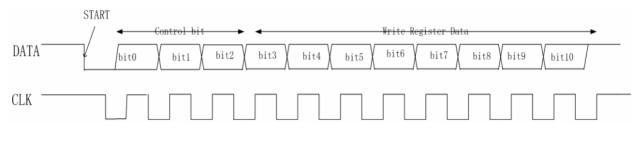
TCTL[3:0]---端口選擇控制位。SGT002 的每一個觸摸檢測通道的計數功能都是独立的, 16 個通道共用一個計數器,使用者可通過 TCTL[3:0]來選擇需要計數、判斷的通道。

TCTL[3:0]	說明	TCTL[3:0]	說明
0000	選擇 SW0	1000	選 擇 SW8
0001	選擇 SW1	1001	選 擇 SW9
0010	選擇 SW2	1010	選擇 SW10
0011	選擇 SW3	1011	選擇 SW11
0100	選擇 SW4	1100	選擇 SW12
0101	選擇 SW5	1101	選擇 SW13
0110	選擇 SW6	1110	選擇 SW14
0111	選擇 SW7	1111	選擇 SW15

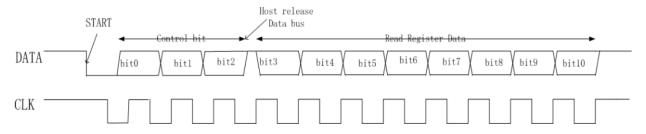
5.2 串行通訊端口

SGT002 內部包含一個 2 線串行通訊端口,通過 DATA 和 CLK 端口可實現與主機通訊。 另 SGT002 還提供計數器狀態標志的輸出口 INT,當計數器完成計數後,INT 輸出"1"。所以當 MCU 使能 SGT002 的某個通道並開始計數後,MCU 就可以通過判斷 INT 的狀態來判斷計數器是否已停止計數。

5.2.1 協議


- 1)每次數據傳輸,必須由主機發起
- 2) 數據包包括: 起始位、控制位、數據位和結束位。

09/03/24 Page 5 of 9 V1.2



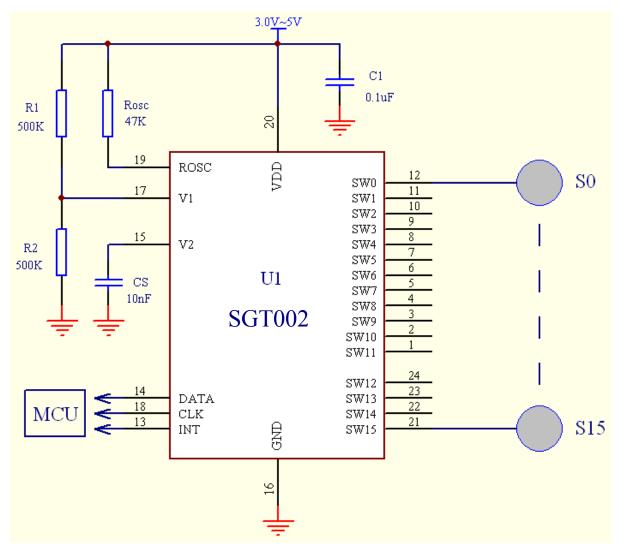
5.2.2 時序

1) 寄存器寫時序

2) 寄存器讀時序

3) 說明

- ◆ Bit0: 讀寫控制位, "0"表示寫操作, "1"表示讀操作。
- ◆ Bit2~1: 寄存器地址, "00"制定 TSEL, "01"制定 TCTL, "10"計數器低位寄存器 CL, "11"計數器高位寄存器

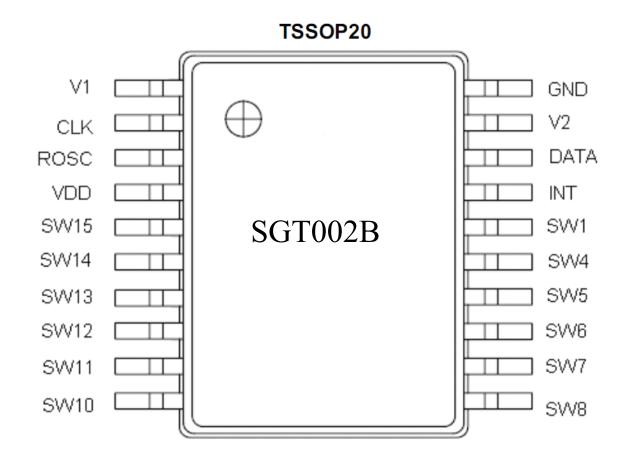

6. 最大絕對額定值

參數	符號	條件	值(範圍)	單位
電源電壓	VDD	Ta=25 ℃	VSS-0.3 ~ VSS+5.5	V
輸入電壓	Vin	Ta=25 ℃	VSS- $0.3 \sim VDD+0.3$	V
輸出電壓	Vout	Ta=25 ℃	VSS < Vout < VDD	V
工作溫度	Тор		-40 °C ~ +85 °C	${\mathbb C}$
存儲溫度	Tstg		-50 °C ~ +100 °C	$^{\circ}$
Fop (工作頻率)	Fop	Ta=25 ℃	512K~10M	Hz
靜電(輸入引腳)	ESD	Ta=25 ℃	2000 (最小值)	V

09/03/24 Page 6 of 9 V1.2

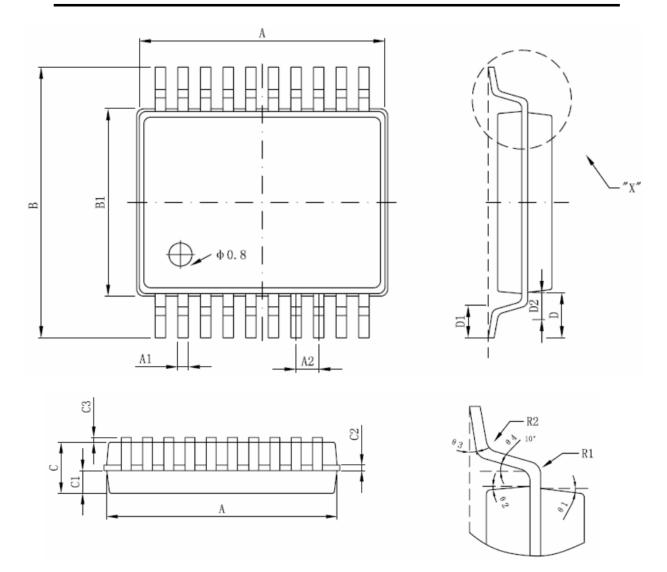
7. 應用電路原理圖

CS 電容用於靈敏度調整,取值範圍: 1nF~0.1uF,典型值: 10nF DATA 和 CLK 是 I²C 通訊端口; INT 是計數器停止計數標志口,停止計數時為高電平。


PCB Layout 注意事項:

Touch PAD 與 Sensor 走線、元器件要走在不同的層; Touch PAD 那一層需輔地,以屏蔽外界幹擾, PAD 與地之間距離≥0.5mm; Sensor 走線尽量走細、走短,所有 Sensor 走線尽量均衡; Touch PAD 下尽量不要走與本通道信號無關的線,Sensor 線尽量走在輔地的下邊,且兩 Sensor線尽量不要近距離平行走線。

09/03/24 Page 7 of 9 V1.2


8.TSSOP-20 封裝腳位圖 (提供 12 個觸摸檢測端口)

9.TSSOP-20 封裝信息

09/03/24 Page 8 of 9 V1.2

尺寸 标注	最 小(mm)	最 大(mm)	尺寸 标注	最 小(mm)	最 大(mm)
A	6. 40	6.60	C3	0. 05	0. 15
A1	0.18	0.30	D	1. OTYP	
A2	0. 65TYP		D1	0.50	0.75
В	6.30	6. 50	R1	0. 15TYP	
B1	4.30	4.50	R2	0. 15TYP	
С	0.80	1.05	θ 1	12° TYP	
C1	0.4365TYP		θ2	12°	TYP
C2	0.09	0.2	θ3	0~8°	
			θ 4	10°	TYP

09/03/24 Page 9 of 9 V1.2